网络出版时间:2022-12-26 17:39:05 网络出版地址:https://kns.cnki.net/kcms/detail//34.1065.R.20221226.1521.003.html

# 黄曲霉毒素 B1 对肝癌细胞 HepG2 生物物理学特性 及细胞骨架结构的影响

于 欢<sup>1</sup>,喻艳琴<sup>1,2</sup>,钱天宝<sup>1</sup>,刘清玉<sup>1</sup>,王 赟<sup>2</sup>,曾 柱<sup>2</sup>,胡祖权<sup>1,2</sup>

**摘要 目的** 研究黄曲霉毒素 B1(AFB1)对人肝癌细胞(HCCs)生物物理学特性及细胞骨架结构的影响。方法 利用 0、0.01、0.1、1、5、10 μmol/L AFB1 分别处理 HepG2 细胞 24 h 和 48 h,采用 CCK-8 试剂盒检测细胞活力。在此基础上,分析 10 μmol/L AFB1 对细胞渗透脆性、膜流动性、细胞 电泳率和 F-actin 骨架结构的影响。随后,提取细胞总 RNA,通过实时荧光定量 PCR 检测 12 种主要细胞骨架结合蛋白的转录水平变化。结果 AFB1 处理 48 h 时 HepG2 细胞的活力呈剂量依赖性增强。10 μmol/L AFB1 处理能够增强HepG2 细胞抗低渗能力及细胞电泳率,细胞骨架 F-actin 含量明显增加,主要细胞骨架结合蛋白的 mRNA 表达发生改变。结论 AFB1 能够影响 HepG2 细胞的生物物理学特性、细胞骨架结构及其结合蛋白,这可能与其毒性作用直接相关。

关键词 黄曲霉毒素;肝癌细胞;生物物理学特性;细胞骨架 中图分类号 R 735.7

文献标志码 A 文章编号 1000 - 1492(2023)01 - 0010 - 05 doi:10.19405/j.cnki.issn1000 - 1492.2023.01.003

黄曲霉毒素(aflatoxin, AFT)是由黄曲霉(Aspergillus flavus)和寄生曲霉(A. parasiticus)等真菌产生的次生代谢产物,在湿热地区易污染花生、玉米等粮食和饲料作物<sup>[1-2]</sup>。以B族的黄曲霉毒素B1(aflatoxin B1, AFB1)最为常见,且毒性和致癌性也最强<sup>[3-4]</sup>。研究<sup>[2-3,5]</sup>显示,AFB1不仅对肝脏细胞、巨

2022-09-10 接收

- 基金项目:国家自然科学基金(编号:21906036);贵州省自然科学基 金资助项目(编号:黔科合基础-ZK[2021]重点029、黔科 合平台人才[2021]5637 号、黔科合平台人才[2016] 5676)
- 作者单位:贵州医科大学<sup>1</sup> 生物与工程学院,贵州省高等学校免疫细 胞与抗体工程研究中心、<sup>2</sup> 基础医学院,贵州省感染免疫 与抗体工程特色重点实验室/贵州省细胞免疫治疗工程研 究中心,贵阳 550025
- 作者简介:于 欢,女,硕士研究生; 胡祖权,男,教授,博士生导师,责任作者,E-mail: huzuquan@gmc.edu.cn;

曾 柱,男,教授,博士生导师,责任作者,E-mail: zengzhu@ gmc. edu. cn

噬细胞和单个核细胞等有毒性作用,而且能够促进 肝癌细胞的增殖、迁移和侵袭<sup>[6]</sup>。鉴于肝癌细胞的 增殖和凋亡受众多因素影响且机制复杂,而细胞的 生物物理学特性及细胞骨架结构与细胞形态和功能 密切相关<sup>[7-10]</sup>,该实验选择肝癌细胞系 HepG2 为研 究对象,利用不同浓度 AFB1 处理后检测 HepG2 细 胞的增殖活性,并在此基础上分析 AFB1 对其生物 物理学特性、细胞骨架结构及其结合蛋白的影响,为 从交叉学科的角度探究 AFB1 的毒性及致癌作用机 制提供实验基础。

#### 1 材料与方法

**1.1 细胞株与毒素** 人肝癌细胞株 HepG2 由北京 大学医学部生物物理学实验室馈赠。AFB1 购自青 岛普瑞邦生物工程有限公司。

1.2 主要试剂 胎牛血清购自浙江天杭生物科技 股份有限公司; DMEM 细胞培养基、0.25% 胰蛋白 酶、100 mg/L 链霉素、100 U/ml 青霉素购自美国 Hyclone 公司; CCK-8 试剂盒、罗丹明标记的鬼笔环 肽、DAPI 购自北京索莱宝科技有限公司; TMA-DPH 购自上海贝博生物科技有限公司; RT-PCR 试剂盒 购自美国 Thermo-Fisher Scientific 公司; RT-qPCR 试 剂盒购自日本 Takara 公司; 引物由上海生工生物工 程股份有限公司合成。

1.3 主要实验仪器 酶标仪(美国 BioTek 公司)、 激光共聚焦显微镜(日本 Olympus 公司)、F-4600 荧 光分光光度计(日本日立公司)、细胞电泳仪(北京 六一生物科技有限公司)、荧光定量 PCR 仪(美国 ABI 公司)。

1.4 细胞活力检测 复苏、培养 HepG2 细胞,细胞 悬液(1×10<sup>5</sup>/ml)按100 μl/孔接种于96 孔板,将培 养板置于培养箱中过夜培养12 h,分别向培养板中 加入10 μl 终浓度为0、0.01、0.1、1、5 和10 μmol/L 的 AFB1,每组3 个重复,孵育24 h或48 h。每孔加 入10 μl CCK-8 溶液,37 ℃培养2 h,酶标仪读取 OD<sub>450 nm</sub>值,按照公式(处理组 – 空白组)/(对照组 – 空白组)×100%分析细胞活力。 **1.5 细胞渗透脆性的检测** 配制 295、265、205、85 mOsm/kg 渗透压,分别处理 HepG2 细胞 30 min。每 孔加入 10 μl CCK-8 溶液,37 ℃培养 2 h,酶标仪测 OD<sub>450 nm</sub>值。以 295 mOsm/kg 作为对照,根据处理 组/对照组 ×100% 统计未破碎细胞百分比。

**1.6 细胞膜流动性检测** 收集细胞, PBS 洗涤两次,将细胞悬液(1×10<sup>5</sup>/ml)与 TMA-DPH 等体积混 合,37 ℃避光孵育 30 min。PBS 洗涤两次,将细胞 重悬于 1 ml PBS 中。荧光光谱法分析细胞在偏振 片于不同角度时的荧光强度 I,激发和发射波长分 别为 360 nm 和 430 nm,夹缝宽度为 5 nm,激发电压 为 400 V,扫描时间为 10 s;根据( $I_{VV} - GI_{VH}$ )/( $I_{VV}$ +  $GI_{VH}$ )计算荧光偏振度(P)值,其中校正因子 G =  $I_{HV}/I_{HH}$ ; $I_{VV}$ 为起偏器和检偏器光轴同为垂直方向时 测得的荧光强度; $I_{VH}$ 为起偏器和检偏器光轴分别为 垂直和水平方向时测得的荧光强度; $I_{HV}$ 起偏器和检 偏器光轴分别为水平和垂直方向时测得的荧光强 度; $I_{HH}$ 起偏器和检偏器光轴同为水平方向测得的荧 光强度。

1.7 细胞电泳率检测 细胞用 10% 蔗糖溶液重 悬,通过细胞电泳仪,检测电泳迁移率。记录泳动距 离(S)、时间(T)及电压(U),通过(S/T)/(U/L)计 算细胞电泳迁移率(electrophoresis mobility, EPM), 其中 L 为电泳槽两极间的距离(4.2 cm)。

1.8 细胞骨架 F-actin 结构分析 细胞经 4% 多聚 甲醛固定 1 h, PBS 洗涤后用 0.1% Triton X-100 处 理 5 min; PBS 洗涤后加入 1% BSA 封闭 30 min; PBS 洗涤后加入罗丹明标记的鬼笔环肽, 避光孵育 30 min; PBS 洗涤后加入 DAPI 溶液避光孵育 5 min, 封 片并用激光共聚焦显微镜观察 F-actin 结构。

**1.9 RT-qPCR 检测基因相对表达量** TRIzol 法提取 mRNA,用逆转录试剂盒合成 cDNA,定量后作为模板进行实时荧光定量 PCR(real-time quantitative PCR, RT-qPCR)反应,GAPDH 和一些主要细胞骨架 结合蛋白特异性引物见表 1。反应条件如下:95 ℃ 变性 30 s,40 个扩增循环(95 ℃、5 s,60 ℃、30 s,72 ℃、30 s)。采用  $2^{-\Delta\Delta G}$ 公式分析实验组靶基因的转录水平变化。

**1.10** 统计学处理 计算 3 次重复实验的平均值和标准差。使用 Microsoft Excel 分析,结果以 x ± s 表示。两组之间比较运用独立样本 t 检验,多组间比较采用方差分析(ANOVA),以 P < 0.05 为差异有统计学意义。

### 2 结果

**2.1 细胞活力分析** 采用 CCK-8 试剂盒检测 AFB1 对 HepG2 细胞活力的影响,结果如表 2 所示。 不同浓度 AFB1 处理 24 h 后,细胞活力的变化不明 显。当处理 48 h 时,AFB1 能够不同程度增强细胞 的活力,在 AFB1 浓度为 5 μmol/L 和 10 μmol/L 时 差异有统计学意义(*P*<0.05 或 *P*<0.01)。

表1 引物序列

| 引物名称                   | 引物序列(5'-3')               |  |  |
|------------------------|---------------------------|--|--|
| GAPDH                  | 上游:GACCTGACCTGCCGTCTA     |  |  |
|                        | 下游:ACGAGTGGGTGTCGCTGT     |  |  |
| Thymosin <sub>β4</sub> | 上游:CCGCTCTTTTGTTTCTTGCT   |  |  |
|                        | 下游:CTGCGTCTCCGTTTTCTTCA   |  |  |
| Profilin               | 上游:CTGAGGTGGGTGTCCTGGTT   |  |  |
|                        | 下游:GCGTCTTGTCAGTCTTGGTG   |  |  |
| VASP                   | 上游:AGGTAAAGGAAAACCAATGAGG |  |  |
|                        | 下游:CAGAGTGGCAGGCAGAGTGT   |  |  |
| WASP                   | 上游:AAGGGCAGAAAGCACCAT     |  |  |
|                        | 下游:TTCGTCCAAGCATCTCAAAG   |  |  |
| $\alpha$ -actinin      | 上游:CTAACTCAGAAGCGAAGGGAA  |  |  |
|                        | 下游:ATCCAGTTGTTGAAGGGTGC   |  |  |
| Arp2/3 complex         | 上游:GTTGCCTTCATCCTAACTGCT  |  |  |
|                        | 下游:CCTATGGGAACTCGTATTGGT  |  |  |
| Capping protein        | 上游:TAAAGAAGGCTGGAGATGGAT  |  |  |
|                        | 下游:CGTGGAGGTCAACTTGTAATG  |  |  |
| Cofilin                | 上游:CTGCCTGAGTGAGGACAAGA   |  |  |
|                        | 下游:TCTTGACAAAGGTGGCGTAG   |  |  |
| Filamin A              | 上游:CTTTCTCAGTGGCAGTATCTCC |  |  |
|                        | 下游:CAGCACCCTTTGATTTGACT   |  |  |
| ABP                    | 上游:AATGCCCTTTGACCCCTCTA   |  |  |
|                        | 下游:GAATACTGACTTCGGCTTTTGT |  |  |
| Fascin1                | 上游:CAGGGTATGGACCTGTCTGC   |  |  |
|                        | 下游:CGCCACTCGATGTCAAAGTA   |  |  |
| Caldesmon              | 上游:AGGAGACGTATCCAGCAAGC   |  |  |
|                        | 下游:CGAATTAGCCCTCTACAACTGA |  |  |

| 表 2 | AFB1 对人肝癌细胞 HepG2 细胞活力的影响 $(n=3)$ | $,\%, x \pm s)$ |
|-----|-----------------------------------|-----------------|
|-----|-----------------------------------|-----------------|

| AFB1 浓度  | 时间点 | OD 值                  | 细胞活力  | F 值    |
|----------|-----|-----------------------|-------|--------|
| (µmol/L) | (h) |                       |       |        |
| 0        | 24  | $2.571 \pm 0.088$     | -     |        |
|          | 48  | $3.489 \pm 0.098$     | -     |        |
| 0.01     | 24  | $2.553 \pm 0.063$     | 99.2  | 0.173  |
|          | 48  | $3.578 \pm 0.064$     | 102.7 | 3.467  |
| 0.1      | 24  | $2.581 \pm 0.176$     | 100.4 | 0.013  |
|          | 48  | $3.553 \pm 0.082$     | 101.9 | 1.482  |
| 1        | 24  | $2.519 \pm 0.124$     | 97.7  | 0.716  |
|          | 48  | $3.604 \pm 0.131$     | 103.5 | 2.955  |
| 5        | 24  | $2.540 \pm 0.140$     | 98.7  | 0.214  |
|          | 48  | $3.686 \pm 0.075$ *   | 106.0 | 15.189 |
| 10       | 24  | $2.549 \pm 0.089$     | 99.0  | 0.197  |
|          | 48  | $3.784 \pm 0.020$ * * | 109.0 | 51.581 |

与0 µmol/L 比较: \* P < 0.05, \* \* P < 0.01

2.2 细胞渗透脆性变化 不同渗透压处理 30 min 后,HepG2 细胞的渗透脆性随渗透压的增加逐渐减弱(图 1)。在渗透压力为 85 mOsm/kg 时,10 μmol/L AFB1 处理组的细胞未破碎率增多,与对照 组相比,差异有统计学意义(*P* < 0.01),表明 AFB1 使 HepG2 细胞的抗张力能力增强。



2.3 细胞膜流动性的变化 采用疏水膜荧光探针 TMA-DPH 研究细胞膜的流动性,荧光偏振度 P 值 越小,表明细胞膜流动性越大。与对照组相比,经 10 μmol/L AFB1 处理后 P 值减小,但差异无统计学 意义(图 2)。



图 2 AFB1 对 HepG2 细胞膜流动性的影响

2.4 细胞电泳率的变化 EPM 能够反映细胞膜表 面糖蛋白唾液酸水解使细胞所带负电荷的情况,结 果显示 AFB1 使 HepG2 细胞的 EPM 增加(对照组 vs 处理组),差异有统计学意义(P < 0.01)(图3)。因此,AFB1 使 HepG2 细胞膜表面的电荷量增加。

2.5 细胞骨架 F-actin 结构的变化 激光共聚焦显 微镜观察和分析结果如图 4 所示,正常 HepG2 细胞 呈圆球形,细胞骨架 F-actin 分布较为密集且规律。 经 AFB1 处理后细胞胞体变大,且 F-actin 含量增加

(对照组 vs 处理组),细胞表面更为粗糙,出现更多的突起,表明细胞骨架结构发生重塑。



图 4 AFB1 对 HepG2 细胞 F-actin 的影响

A:对照组; B: AFB1 处理组; C: F-actin 含量统计; 与对照组比 较: \* P < 0.05

2.6 微丝结合蛋白的转录变化情况 细胞骨架 Factin 重塑是在多种细胞骨架结合蛋白的持续参与 下通过不断地解聚和聚合来完成。本实验利用 RTqPCR 检测 12 种主要细胞骨架结合蛋白在 mRNA 水平的表达情况(图5)。AFB1 处理后,细胞骨架结 合蛋白的表达发生了改变。促聚蛋白和细丝蛋白 A 的转录下调,差异有统计学意义(P<0.01);钙调素 结合蛋白、血管扩张刺激磷蛋白(vasodilator-stimulated phosphoprotein, VASP)、威奥综合征蛋白(wiscott-Aldrich syndrome protein, WASP)、加帽蛋白、丝 切蛋白、肌球蛋白相关蛋白 2/3 复合体(actin-related protein 2/3 complex, Arp2/3 complex)、胸腺素 β4、 α-辅肌动蛋白、肌动蛋白结合蛋白(actin-binding protein, ABP)和成束蛋白 1 等 10 个细胞骨架结合 蛋白的基因转录水平发生上调,差异有统计学意义 (P < 0.05, P < 0.01)。



#### 3 讨论

黄曲霉毒素具有很强的细胞毒性、免疫毒性、致 癌性、致畸性和致突变性,对人和动物的正常肝脏组 织有破坏作用,是导致肝癌发病的主要病因之一,但 现有研究显示其对肿瘤细胞的作用与正常细胞存在 很大的差异。本实验中,随着 AFB1 处理浓度的增 高和作用时间的延长,HepG2 细胞活力显著增强, 与许菊萍<sup>[6]</sup>发现低浓度 AFB1 能够促进肝癌细胞增 殖的结果相一致。

细胞的生物物理学特性可以反映其结构和功能 的关系,主要包括渗透脆性、膜流动性和细胞电泳率 等。在肿瘤微环境中,肿瘤细胞通过改变生物物理 学特性对基质硬度等力学刺激作出响应,从而促进 肿瘤细胞生长,因此,肿瘤细胞的生物物理学参数的 改变与癌症的进程具有相关性<sup>[8-9]</sup>。渗透脆性指细 胞抗低渗溶液的能力,是反映细胞膜支撑结构的一 个重要指标<sup>[7]</sup>。AFB1 处理 HepG2 后,细胞的渗透 脆性明显减小(图 1),在渗透压为 85 mOsm/kg 时, 差异有统计学意义,表明细胞抗张力能力显著增强, 细胞不容易溶解,反而更能够适应不同的微环境。 质膜的流动性在细胞生长和分化等过程中发挥重要 作用<sup>[11]</sup>。本实验中,10 μmol/L AFB1 处理后荧光 偏振度 P 值略微降低(图 2),暗示 AFB1 可能使 HepG2 细胞的膜脂成分或结构发生改变,也可能与 细胞形态变化和细胞骨架重塑有关。EPM 是反映 细胞表面电荷密度的重要生物物理参数<sup>[7,10]</sup>,还与 细胞周期相关,处于有丝分裂期细胞的电泳率更 高<sup>[12]</sup>。AFB1 处理 HepG2 细胞后,EPM 显著上升 (图 3),这可能是 AFB1 使细胞活力增加的缘故。 因此,AFB1 能够通过影响 HepG2 细胞的生物物理 学特性来影响其细胞结构和功能。

细胞骨架系统的动态重塑对于维持细胞结构和 发挥功能至关重要<sup>[13]</sup>。在本实验中, AFB1 使 HepG2的F-actin 表达显著增加(图4),表明HepG2 暴露于 AFB1 后其细胞骨架 F-actin 发生重塑;而且 细胞表面更为粗糙,出现更多突起,可能增加了细胞 的侵略性<sup>[9]</sup>。F-actin 重塑离不开细胞骨架结合蛋 白的调控<sup>[7]</sup>,本实验结果也显示12种主要细胞骨架 结合蛋白的基因转录发生了明显变化(图5),表明 这些蛋白参与了细胞骨架的重塑过程。这些细胞骨 架结合蛋白在肿瘤的发生发展中同样起着重要作 用,Shi et al<sup>[14]</sup>研究显示 Hippo-Yap 通过活化 cofilin/F-actin/lamellipodium 信号轴来影响细胞骨架结 构重塑和伪足形成,进而促进肝细胞癌的发生发展; Huang et al<sup>[15]</sup>分析显示 Arp2/3 复合体的高表达与 肝癌患者较差的预后相关,其亚基 ACTR3、ARPC2 和 ARPC5 可作为肝癌进展的独立预后因子。这些 结果表明 AFB1 对细胞骨架结合蛋白表达的影响可 能与其促进肝细胞癌的发生发展有密切联系。

本研究从交叉学科的角度研究了 AFB1 对 HepG2 的细胞活力、渗透脆性、膜流动性、电泳率、 细胞骨架结构及其结合蛋白表达的影响,结果显示 AFB1 能影响 HepG2 的生物物理学特性并重塑细胞 骨架结构,这为进一步解析 AFB1 的毒性机制提供 了新的方向。

#### 参考文献

- [1] Nugraha A, Khotimah K, Rietjens I M C M. Risk assessment of aflatoxin B1 exposure from maize and peanut consumption in Indonesia using the margin of exposure and liver cancer risk estimation approaches[J]. Food Chen Toxicol, 2018, 113:134-44.
- [2] Bianco G, Russo R, Marzocco S, et al. Modulation of macrophage activity by aflatoxins B1 and B2 and their metabolites aflatoxins M1

and M2[J]. Toxicon, 2012, 59(6): 644-50.

- [3] Malvandi A M, Mehrzad J, Saleh-moghaddam M. Biologically relevant doses of mixed aflatoxins B and G up-regulate MyD88, TLR2, TLR4 and CD14 transcripts in human PBMCs[J]. Immunopharmacol Immunotoxicol, 2013, 35(4): 528 - 32.
- [4] Rushing B R, Selim M I. Aflatoxin B1: a review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods[J]. Food Chem Toxicol, 2019, 124: 81 – 100.
- [5] 庞惠萍,丁 泽,苏 娜,等.黄曲霉毒素 B1 致肝脏损伤的 机制[J].动物医学进展,2019,40(12):110-3.
- [6] 许菊萍. 黄曲霉毒素 B1 对肝癌细胞株 SMMC-7721 的影响 [D]. 郑州: 郑州大学, 2009.
- [7] Hu Z Q, Xue H, Long J H, et al. Biophysical properties and motility of human mature dendritic cells deteriorated by vascular endothelial growth factor through cytoskeleton remodeling [J]. Int J Mol Sci, 2016, 17(11): 1756.
- [8] Mierke C T. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells[J]. Rep Prog Phys, 2019, 82(6):064602.
- [9] 王瑜华, 蒋宁城, 徐朝贤, 等. 基于原子力显微术的肿瘤细胞 生物物理特性研究[J]. 福建师范大学学报(自然科学版),

2016, 32(1): 120-4.

- [10] Zhao X, Wang Y, Liu J L, et al. Fumonisin B1 affects the biophysical properties, migration and cytoskeletal structure of human umbilical vein endothelial cells[J]. Cell Biochem Biophys, 2020, 78(3): 375-82.
- [11] Le G J, Morjani H, Fardel O, et al. Conformational changes in membrane proteins of multidrug-resistant K562 and primary rat hepatocyte cultures as studied by Fourier transform infrared spectroscopy[J]. Anticancer Res, 1994, 14(4A):1541-8.
- [12] Mayhew E. Cellular electrophoretic mobility and the mitotic cycle
   [J]. J Gen Physiol, 1966, 49(4):717-25.
- [13] Tang D D, Gerlach B D. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration[J]. Respir Res, 2017, 18(1):54.
- [14] Shi C, Cai Y, Li Y, et al. Yap promotes hepatocellular carcinoma metastasis and mobilization via governing cofilin/F-actin/lamellipodium axis by regulation of JNK/Bnip3/SERCA/CaMKII pathways [J]. Redox Biol, 2018, 14: 59 – 71.
- [15] Huang S, Li D, Zhuang L, et al. Identification of arp2/3 complex subunits as prognostic biomarkers for hepatocellular carcinoma [J]. Front Mol Biosci, 2021, 8: 690151.

## Effects of aflatoxin B1 on the biophysical properties and cytoskeleton structure of hepatocellular carcinoma cell line HepG2

Yu Huan<sup>1</sup>, Yu Yanqin<sup>1,2</sup>, Qian Tianbao<sup>1</sup>, Liu Qingyu<sup>1</sup>, Wang Yun<sup>2</sup>, Zeng Zhu<sup>2</sup>, Hu Zuquan<sup>1,2</sup>
(<sup>1</sup>Immune Cells and Antibody Engineering Research Center in University of Guizhou Province,
School of Biology and Engineering, <sup>2</sup>Key Laboratory of Infectious Immune and Antibody Engineering
of Guizhou Province, Engineering Research Center for Cellular Immunotherapy of Guizhou Province,
School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025)

**Abstract** *Objective* To investigate the effects of aflatoxin B1 (AFB1) on the biophysical properties and cytoskeleton structure of human hepatocellular carcinoma cells (HCCs). *Methods* HepG2 cells were respectively treated with 0, 0, 0, 1, 1, 1, 5, 10 µmol/L AFB1 for 24 h and 48 h, and the cell viability was measured by CCK-8 kit. Based on this result, the influences of 10 µmol/L AFB1 on the osmotic fragility, membrane fluidity, electrophoretic mobility (EPM) and F-actin structure of cells were analyzed. Subsequently, total RNAs were extracted and the transcription-level changes of twelve main cytoskeleton binding proteins were detected by real-time quantitative PCR. *Results* The increased viability of HepG2 cells was induced by AFB1 in a dose-dependent manner after 48 h treatment. After treated with 10 µmol/L AFB1, the anti-hypotonic ability and EPM of HepG2 cells were enhanced. The content of F-actin in HepG2 cells increased obviously, while the mRNA expression levels of the main cytoskeleton binding proteins were altered. *Conclusion* AFB1 can affect the biophysical properties, cytoskeleton structure and its binding proteins of HepG2 cells, which may be directly related to its toxic action.

Key words aflatoxin; hepatocellular carcinoma cells; biophysical properties; cytoskeleton