• 1492 •

钛表面双层纳米管制备及生物活性的测定

孙 磊'夏 荣'徐基亮'胡小晔',刘 春',孙子环'

摘要 采用电化学两步阳极氧化法在钛表面制备纳米管,光 滑纯钛作为对照组,通过场发射电镜、X 射线能量色散谱和 原子力显微镜观察分析试件表面微观形貌、元素组成和三维 形貌并计算粗糙度。体外培养小鼠骨髓间质干细胞(BM-SCs)进行生物活性的测定。结果显示在钛表面制备出有序 的双层蜂窝状二氧化钛纳米管阵列,纳米管的表面由钛和氧 元素组成,纳米管组粗糙度值大于光滑组,两组间比较差异 有统计学意义(P<0.05),纳米管组试件促进了 BMSCs 的黏 附、增殖和分化。

关键词 钛;阳极氧化;纳米管;骨髓间质干细胞;生物活性 中图分类号 R 783.1

文献标志码 A 文章编号 1000-1492(2014)10-1492-04

钛因其优异的生物相容性、良好的抗腐蚀性和 高机械强度,作为口腔种植体材料已被广泛应用于 临床牙列缺损及牙列缺失患者的修复治疗中。种植 义齿修复成功的决定因素是种植体界面的骨结合。 然而种植体的表面形貌及表面成分对骨结合具有重 大影响,因此种植体表面改性处理是植入材料的研 究热点之一。该研究采用电化学两步阳极氧化法构 建一种新型二氧化钛(TiO₂)双层纳米管阵列,观察 分析其微观结构并测定其生物活性,以期为钛种植 体表面修饰提供一种新的方法。

1 材料与方法

1.1 材料与设备

1.1.1 主要材料和试剂 直径为 12 mm,厚度为 0.25 mm的钛片(纯度为 99.99%,北京中金研新材 料科技有限公司);小鼠骨髓间质干细胞(bone marrow mesenchymal stem cells, BMSCs)和干细胞完全培

- 基金项目:安徽省科技厅年度重点科研资助项目(编号: 12070403070)
- 作者单位:¹安徽医科大学第二附属医院口腔科,合肥 230601 ²安徽省纳米材料与纳米结构重点实验室,中国科学院固 体物理研究所,合肥 230031
- 作者简介:孙 磊,女,住院医师,硕士研究生;

夏 荣 男 注任医师 医学博士 ,硕士生导师 ,责任作者 , E-mail:xiarongqh@ aliyun.com 养基(上海晶旷生物科技有限公司提供);乙二醇 (上海苏懿化学试剂有限公司);氟化铵(国药集团 化学试剂有限公司)。

 1.1.2 主要仪器 Sirion-200 扫描电子显微镜 (scanning electron microscope SEM)(FEI,美国);原 子力显微镜(atomic force microscope ,AFM)(Innova Veeco 美国);LP6003D型直流稳压电源(深圳市乐 达精密工具有限公司);Axioskop2 plus 荧光显微镜 (ZEISS,德国);ELX800 酶标仪(BIO-TEK,美国); CO,培养箱(Thermo 美国)。

1.2 制备纳米管阵列

1.2.1 钛片预处理 将厚度为 0.25 mm 的纯钛片 切割成直径为 12 mm 的圆片 70 枚,使用 800 #、 2000#、3000#、5000#和 7000#的砂纸将其表面逐级 打磨抛光至镜面状 依次在丙酮、乙醇和去离子水中 超声清洗 20 min 后干燥备用。制备好的试件称为 光滑组试件。

1.2.2 阳极氧化 取上述光滑组试件 35 枚分别放 入含有 88 mmol/L 氟化铵的乙二醇电解液中,与阳 极相连,石墨为阴极,在设定的电压和时间下,分两 步进行阳极氧化:60 V 2.5 h;12 V 40 min。取出钛 片在去离子水中超声清洗 15 min,干燥后备用。制 备好的试件称为纳米管组试件。

1.3 表面微观结构及理化特性分析

1.3.1 表面微观结构以及元素分析 在光滑组和 纳米管组中各随机选取3枚试件 SEM 观察分析试 件表面微观形貌 ,X 射线能量色散谱(energy-dispersive X-ray spectroscopy ,EDS)分析试件表面元素组 成。

1.3.2 表面三维形貌及粗糙度 在光滑组和纳米 管组中各随机选取 3 枚试件,在试件表面不同半径 上随机选择 3 个位点,利用 AFM 观察和测定其表面 的三维形貌及平均粗糙度(roughness average,Ra), 取 3 个位点 Ra 的平均值。

1.4 体外生物活性测定

1.4.1 试件灭菌 将光滑组和纳米管组每组各 29 枚共 58 枚试件用环氧乙烷(55 ℃ 2 h)灭菌。

1.4.2 细胞黏附计数 从两组试件中随机各选取

²⁰¹⁴⁻⁰³⁻²⁴ 接收

9 枚置于 24 孔培养板中,将 BMSCs 按 1 × 10⁵ 个/ ml、500 μl/孔接种至试件表面。细胞孵箱中培养 30、60 和 120 min 后每组各取 3 孔,用 PBS 漂洗 3 次 *A*% 多聚甲醛固定 BMSCs,室温下用 Hoechst 33342 避光染色 10 min,正置荧光显微镜观察,随机 选 3 个视野拍摄照片,利用软件进行细胞计数。

1.4.3 细胞伸展形态观察 从两组试件中随机各选取 2 枚置于 24 孔培养板中 细胞接种同细胞黏附 实验 ,BMSCs 培养 120 min 后终止培养 ,用 PBS 轻柔 漂洗 3 次 ,加入 2.5 % 戊二醛固定 24 h 后干燥 ,喷 金后 SEM 观察 BMSCs 生长状况。

1.4.4 细胞增殖检测 试件放置同细胞黏附实验, BMSCs 接种密度为 2 × 10⁴ 个/ml、500 μl /孔,BM-SCs 培养 1、3 和 5 d 后分别终止,用 PBS 清洗 3 次后 每孔加入 200 μl MTT(5 mg/ml)和 800 μl 无血清无 酚红 DMEM 37 ℃孵育 4 h 后吸弃上清液 加入 1 ml DMSO,每孔分别取 3 份 200 μl 溶解液转移至 96 孔 培养板,空白孔调零,酶标仪在 490 nm 波长下检测 吸光度(optical density,OD)值。

1.4.5 细胞分化检测 试件放置和细胞接种同细胞黏附实验 BMSCs 培养至第3、5和7天 用0.2% Trition X-100 溶液裂解细胞 30 min 后滴加 AKP 检测试剂 37 ℃水浴 15 min 加入1.5 ml 显色液 酶标 仪在 490 nm 波长下检测 OD 值。

1.5 统计学处理 采用 SPSS 10.0 统计软件进行 分析 数据以 $\bar{x} \pm s$ 表示 采用两独立样本的 t 检验。

2 结果

2.1 微观形貌观察 SEM 结果显示光滑组试件表 面偶见裂隙和划痕。纳米管组试件表面则形成了蜂 窝状有序的 TiO₂ 纳米管阵列,由上、下两层 TiO₂ 纳 米管组成,上层纳米管为有序的六边形和五边形阵 列,孔径约为 160 nm;下层纳米管开口端位于上层 纳米管中,各管开口端在轴向上互相粘合,孔径约为 20 nm,深度约为 500 nm,见图 1。

2.2 元素分析 EDS 结果显示光滑组试件表面元 素为钛,纳米管组试件表面钛元素质量百分比为 75.81%,氧元素质量百分比为24.19%,见图2。

2.3 立体形貌观察和粗糙度测量 AFM 三维立体 形貌图可见光滑组表面有细微的划痕,纳米管组表 面呈典型的蜂窝状三维立体形貌,见图 3。经统计 分析,光滑组试样的 Ra 值为(20.3 ± 4.4) nm,纳米 管组试件的 Ra 值为(37.8 ± 1.8) nm 纳米管组粗糙 度大于光滑组,差异有统计学意义(P < 0.05, t = 6.3168)。

图 2 两组试件能谱图 EDS A:光滑组试件表面元素为钛;B:纳米管组试件表面元素为钛和氧

图 3 两组试件表面三维立体照片 AFM A:光滑组有细微的划痕; B:纳米管组呈典型蜂窝状

2.4 生物活性测定

2.4.1 细胞黏附 光滑组和纳米管组表面的 BM-SCs 在培养 30、60 和 120 min 后细胞数差异有统计 学意义(*P* < 0.05),见表 1。

2.4.2 细胞形态 培养 120 min 后,光滑组和纳米

管组表面 BMSCs 均向四周伸展,纳米管组板状伪足 更宽大而明显,细胞出现两极改变并伸长,长轴两端 出现大量细小的丝状伪足,见图4。

表1 两组3个时间点 BMSCs 细胞计数的比较 $(n x \pm s)$

时间	光滑组	纳米管组	t 值
30 min	291 ±11	$405 \pm 13^*$	11.456 1
60 min	382 ± 13	$419 \pm 16^{*}$	3.1691
120 min	339 ± 9	$365 \pm 8^*$	3.835 6

与光滑组比较:* P < 0.05

图 4 培养 120 min 后两组试件表面的 BMSCs 形态 A:光滑组; B:纳米管组; 1:SEM ×2 000; 2:SEM ×5 000

2.4.3 细胞增殖 与光滑组比较,纳米管组在第 1、3、5 天的 BMSCs 增殖活力均有增加,其中第3、5 天明显增加,差异有统计学意义(*P* < 0.05),见表2。

\mathcal{Q}_2 网络5 时间点 MIT 关键 OD 值 ($n = 10$, $n = 3$)	表 2	两组3个	、时间点	MTT	实验 OD	• 值((n = 18)	$x \pm s$
--	-----	------	------	-----	-------	------	----------	-----------

时间	光滑组	纳米管组	t 值
第1天	0.0997 ± 0.0150	0.1037 ± 0.0085	0.400 9
第3天	0.2007 ± 0.0759	$0.415\ 0\pm 0.024\ 3^*$	4.6556
第5天	0.6247 ± 0.0100	$0.742\ 3\pm 0.054\ 1^*$	3.7057

与光滑组比较:* P < 0.05

2.4.4 细胞分化 与光滑组比较,纳米管组在第 3、5、7 天 BMSCs 的 AKP 活力均有增加,其中第7 天 明显增加,差异有统计学意义(*P* < 0.05),见表 3。

表3 两组3个时间点 AKP 实验 OD 值(n = 18 x ± s)

时间	光滑组	纳米管组	t 值
第3天	$0.049\ 0 \pm 0.006\ 0$	0.0507 ± 0.0050	0.368 6
第5天	$0.069\ 0 \pm 0.008\ 5$	$0.071\ 0 \pm 0.005\ 3$	0.344 7
第7天	0.0897 ± 0.0035	$0.0993 \pm 0.0040^{*}$	3.127 2

与光滑组比较:* P < 0.05

3 讨论

文献^[1-2] 首次报道了 TiO, 纳米管用于生物材 料的表面修饰,与光滑的钛表面相比,TiO,纳米管 排序高度规整有序、表面积增大、机械强度高、吸附 能力强、不易发生光腐蚀、耐酸碱性好、具有很好的 生物相容性且对机体无毒;TiO,纳米管是在原有的 钛基底直接构建的,与在钛表面进行外来涂层修饰 所不同,不易发生剥脱和分层现象;垂直排列的 TiO₂ 纳米管的管状形貌可以提供药物和生物因子 所需的空间结构^[3]。制备 TiO₂ 纳米管的方法主要 有:溶胶-凝胶法、模板法、水热合成法以及电化学 阳极氧化法。阳极氧化法工艺简单,成本低廉,可操 作性强 更适合应用于形状复杂的种植体表面的处 理。然而 这些工作都集中在垂直的 TiO, 纳米管阵 列 即从管顶部到管底部的直径都相等的 TiO₂ 纳米 管。随着纳米科学的发展,这种仅仅具有单一直径 的 TiO₂ 纳米管阵列或许不能完全满足临床的应用 需求。因此探究一种简便、有效的合成方法 制备结 构复杂有序的新型 TiO,纳米管将具有重要意义。

本研究中通过两步阳极氧化法成功制备出新型 蜂窝状 TiO₂ 双层纳米管阵列。SEM 结果显示纳米 管的结构均匀,排列有序,可用作载体,并可使装载 均匀;EDS 结果分析 TiO₂ 纳米管试样成分主要为钛 和氧元素;纳米管修饰钛表面后,Ra 值增大,材料表 面的粗糙度是骨组织与种植体能否形成牢固结合的 影响因素之一,研究^[4]表明粗糙表面的种植体增加 了接触面积,改变成骨细胞的排列堆积方式,促进成 骨细胞的黏附、增殖和表达;体外 BMSCs 细胞培养 实验表明纳米管组钛表面较光滑组钛表面更有利于 细胞的黏附、增殖和分化。

参考文献

- [1] 左 杨 夏 荣 屠姗姗 等. 纯钛种植体表面的纳米改性研究 [J]. 安徽医科大学学报, 2013 48(10):1214-7.
- [2] Shrestha N K ,Macak J M ,Schmidt-Stein F ,et al. Magnetically guided titania nanotubes for site-selective photocatalysis and drug release [J]. Angew Chem Int Ed Engl 2009 48 (5) :969 – 72.
- [3] Ma Q, Mei S, Ji K et al. Immobilization of Ag nanoparticles/FGF-2 on a modified titanium implant surface and improved human gin-gival fibroblasts behavior [J]. J Biomed Mater Res A, 2011,98 (2):274 86.
- [4] 范 震,贾 爽,苏剑生.种植体表面粗糙度对成骨细胞增殖及ALP含量的影响[J].口腔颌面外科杂志 2009,19(2):128-31.

MSCT 和¹⁸ F – FDG PET – CT 显像对食管癌术前分期诊断的价值 季 爽 品维富 汪世存 潘 博 倪 明

摘要 经内镜和病理证实并接受手术治疗的 182 例食管癌 患者入组 患者均在术前 1 周接受多层螺旋 CT(MSCT) 和氟 代脱氧葡萄糖正电子发射断层扫描 CT(¹⁸F-FDG PET-CT) 扫 描 结合图像信息,记录其术前分期,并与术后病理结果比 较。MSCT 与¹⁸F-FDG PET-CT 扫描对判断 T 分期准确率的 差异无统计学意义(χ^2 = 0.540 *P* = 0.463),而¹⁸F-FDG PET-CT 扫描对判断 N 分期的灵敏度、特异度及准确率均高于 MSCT(*P* < 0.05);术前 MSCT 扫描检测 T、N 分期与术后病 理一致性差(Kappa = 0.376,Kappa = 0.317,*P* < 0.01),而术 前¹⁸F-FDG PET-CT 扫描检测 N 分期与术后病理高度一致 (Kappa = 0.750 *P* < 0.01)。

关键词 食管肿瘤;体层摄影术;肿瘤分期;诊断;评价研 究

中图分类号 R 730.44; R 735.1; R 814.42; R 817.4 文献标志码 A 文章编号 1000 - 1492(2014)10 - 1495 - 04

常规的食管癌扫描手段难以提供准确的术前分

2014 - 03 - 19 接收 基金项目:安徽省卫生厅医学科研课题计划(编号:13ZC020) 作者单位:安徽医科大学附属省立医院影像科,合肥 230001 作者简介:李 爽,女,硕士研究生; 吕维富,男,教授,主任医师,硕士生导师,责任作者,Email:1wf99@126.com 期,而多层螺旋 CT (multi-slice computer tomography, MSCT)和氟代脱氧葡萄糖正电子发射断层扫描 CT (¹⁸ F-FDG positron emission tomography combined comput-ed tomography,¹⁸ F-FDG PET-CT)借助其良 好的组织分辨率能显示食管轮廓变化、确定食管腔 外肿瘤侵及程度及淋巴结转移情况^{[11},但目前对食 管癌临床分期价值尚存争议。现收集经纤维食管镜 证实并接受手术治疗的食管癌患者 182 例,回顾性 分析 MSCT 及¹⁸ F-FDG PET-CT 扫描图像并进行 TNM 分期,与术后病理分期进行对比分析,以评价 MSCT 和¹⁸ F-FDG PET-CT 在食管癌分期中的价值。

1 材料与方法

1.1 病例资料 回顾性分析安徽医科大学附属省 立医院 2009 年 1 月~2013 年 1 月经纤维食管镜和 病理活检证实且资料完整的 182 例食管癌患者的临 床资料 患者均接受手术治疗。患者的主要症状为 进行性吞咽困难,或伴呕吐、胸背痛、消瘦、声音嘶哑 等。患者均在术前 1 周内行 MSCT 及¹⁸F-FDG PET-CT 扫描并作出临床分期,术前均未接受过抗肿瘤治 疗。182 例患者中,男 155 例,女 27 例,年龄 35~90

The preparation of titanium surface coated with double-layers nanotubes and the determination of its biological activity

Sun Lei , Xia Rong , Xu Jiliang , et al

(Dept of Stomatology, The Second Hospital of Anhui Medical University, Hefei 230601)

Abstract Two-step electrochemical anodic oxidation method was applied to prepare nanotube on titanium surface. Smooth titanium samples were regarded as a control group. Surface morphology, elemental composition, three-dimensional topography, and the roughness were observed and analyzed by field emission scanning electron micro-scope ,X-ray energy dispersive spectroscopy and atomic force microscopy respectively. The mouse bone marrow mesenchymal stem cells (BMSCs) were cultured to determine the biological activity *in vitro*. The results showed that double honeycomb titania nanotube arrays were successfully prepared. The elements in the surface of nanotubes composed of titanium and oxygen. The roughness of nanotube group was greater than that in smooth group with significant difference (P < 0.05). The surface of nanotube group promoted BMSCs adhesion, proliferation and differentiation.

Key words titanium; nanotubes; anodic oxidation; bone marrow mesenchymal stem cells; biological activity