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To further compare the binding activity of NEIBMs with the four mouse IgG subclasses ELISA was conducted with
HRP-abeled NEIBMs. Results

rected by mouse IgG1

After five four five and five rounds molecular evolution of the phage library di-
[gG2a IgG2b and IgG3  the control phages and one inserted the library was all two inserted
domains phages suggesting that the evolution of the library was finished. Sequence analysed by the software
showed that DD DD AC and DC were obtained by the mouse IgGl IgG2a IgG2b and IgG3 respectively. The
phage binding assays confirmed that the three molecules possessed binding advantages with the four mouse IgG sub—
classes. The results of ELISA with HRP-Jabeled NEIBMs were not completely consistent with the in vitro molecular
evolution of the library by four mouse IgG subclasses
IgG2a > 1gG2b > 1gG1. Conclusion

C and D-C are obtained from the in vitro molecular evolution of a combinatorial phage library displaying randomly—

but the binding strength was consistent all were: IgG3 >

In this work three novel evolved immunoglobulin binding molecules D-D A-
rearranged various binding domains and they have special binding advantages with the four mouse IgG subclasses
that don’ t exist neither in SpA nor SpG. The three molecules provide the new molecules for the purification and de-
tection of the four mouse IgG subclasses.

Key words phage library; directed molecular evolution; subclass; NEIBM
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resonance imaging features of therapy-induced cerebral necrosis

Application of 9.4 T of DTT in the diagnosis of cerebral gliomas of SD rat
Ma Lu
(Dept of Radiology The Four Affiliated Hospital of Anhui Medical University —Hefei

Yu Yongqgiang
230022)

Abstract Objective To investigate the 9.4 T of DTT in the diagnosis of SD rat C6 cerebral gliomas model about
the change of CST on tumor progression and pathology confirmed. Methods (1) 10 ul C6 cell suspension of 10°
cells number were implanted into the right caudate nucleus of brain hemisphere of 20 adult male SD rat with ster—
eotactic technique. (2) Application of 9.4 T of DTT and DTI meanwhile the routine T1-weighted imaging (T1WI)

T2-weighted imaging(T2WT)

quired. Anatomic relationship between cerebral glioma and surrounding white matter fiber tracts was analyzed and

contrast-enhanced TIWI FLAIR imaging and diffusion tensor of the brain were ac—

color-coded directional

All of SD rat

measured the values of FA and MD in different areas on fractional anisotropic (FA) map
map three-dimensional (3D) white matter fiber tracts map then stained with routine HE. Results
C6 cerebral gliomas models 3D white matter fiber tracts map by means of FA maps of DTI were successfully comple—
ted. Apparently significant differences of FA values were found in solid tumor surrounding edema compared with
normal white matter regions (P <0. 05) ;but there was no significant difference among solid tumor and surrounding
edema region (P >0. 05) ;there were significant differences of MD values between solid tumor surrounding edema
and normal white matter region (P <0.05). Conclusion The 9.4 T of DTT offers the optimal visualization of An—
atomic relationship between cerebral glioma and surrounding white matter fiber tracts in the different periods of the
tumor moder.
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