RUNX3 启动子区甲基化对脓毒症患者 28 天预后的预测价值

应流念1,刘 磊1,2,张 颖1,2,殷永强1,钟 毅2

(1贵州医科大学麻醉学院,贵阳 550004;2贵州医科大学附属医院麻醉科,贵阳 550004)

摘要 目的 研究脓毒症患者中 RUNX 家族转录因子 3(RUNX3)启动子甲基化状态及其 mRNA 表达,分析其与脓毒症的预后关系。方法 从基因表达综合数据库(GEO)中多个数据集鉴定出脓毒症差异表达基因 RUNX3,并验证基因表达和甲基化位点。纳入 120 例脓毒症患者,入组时记录临床资料并收集血液样本。采用 qPCR 和甲基化特异性聚合酶链反应(MSP)检测脓毒症患者血液中 RUNX3 相对表达量及启动子甲基化状态;采用 Pearson 相关系数对患者血液中 RUNX3 水平与临床指标进行相关性分析,Kaplan-Meier 法绘制生存曲线,Cox 比例风险回归分析影响脓毒症患者预后的因素。结果 从数据集分析得到RUNX3 是脓毒症预后相关的差异甲基化基因。RUNX3 mRNA 的表达水平在脓毒症死亡组较存活组低(P<0.05),死亡组RUNX3 甲基化比例高于存活组(P<0.05);脓毒症组 RUNX3 mRNA 表达水平与白细胞介素(IL)-6、降钙素原(PCT)、C-反应蛋白(CRP)、急性生理学与慢性健康状况评分 II(APACHE II)评分、序贯器官衰竭(SOFA)评分呈负相关;Kaplan-Meier 法分析脓毒症甲基化组 28 d 存活率低于非甲基化组(P<0.05);Cox 回归分析结果显示 RUNX3 启动子区甲基化是预测脓毒症患者 28 d 预后的独立危险因素。结论 脓毒症患者中 RUNX3 mRNA 水平降低且启动子区甲基化程度较高,RUNX3 启动子区甲基化是脓毒症患者 28 d 预后的独立危险因素,可作为脓毒症预后生物标志物。

关键词 脓毒症;RUNX 家族转录因子3;甲基化;炎症反应;生物标志物

中图分类号 R 446.11

文献标志码 A 文章编号 1000 - 1492(2025)10 - 1924 - 08 doi:10.19405/j.cnki.issn1000 - 1492.2025.10.019

脓毒症是由机体对感染反应失调引起的危及生 命的器官功能障碍[1],目前,由脓毒症引起的病死 率很高,占全球病死率约20%[2],且脓毒症休克患 者预后较差,是重症监测治疗室(intensive care unit, ICU)治疗费用较昂贵的病理生理疾病之一。RUNX 家族转录因子 3(RUNX family transcription factor 3, RUNX3)是一种转录因子,影响器官的发育过程和 调节细胞的增殖、分化和凋亡等[3]。 DNA 甲基化是 一种常见的表观遗传学修饰,有研究[4]报道在脓毒 症的诊断和治疗中某些基因发生甲基化修饰, DNA 甲基化标记有助于区分脓毒症的早期和晚期发生情 况,抑制 DNA 甲基化可通过调节 NF-κB 途径来改 善脓毒症的存活率^[5]。RUNX3 基因的转录调控主 要受启动子甲基化的影响,先前的研究[6]表明,在 肿瘤和自身免疫性疾病中,RUNX3的表达异常现象 较为普遍,而在脓毒症中的研究相对较少。基于此, 本研究旨在通过分析脓毒症患者差异基因表达数

阐明 RUNX3 启动子甲基化对脓毒症患者预后的影响,以期为脓毒症的早期诊断、预后评估及治疗靶点的确定提供科学依据。

据,揭示 RUNX3 在脓毒症中的表达变化,并进一步

1 材料与方法

1.1 病例资料 收集 2023 年 2 月—2024 年 6 月在 贵州医科大学附属医院综合 ICU 的脓毒症患者 120 例。纳入标准:① 所有患者均满足 sepsis-3^[7]诊断 标准。病原学检查或影像学检查明确感染;炎症指 标 PCT、IL-6、CRP 明显增高;对于感染或疑似感染 的患者,SOFA 评分较基线上升≥2分。② 年龄≥ 18 岁。③ 首次入住 ICU。④ 获得知情同意。排除 标准:① 既往心、脑等重要脏器功能不全或严重原 发病者。② 恶性肿瘤、变态反应性疾病、免疫缺陷 性疾病、自身免疫性疾病者、再生障碍性贫血病史 者。③ 近6个月内接受放疗、化疗、激素或免疫抑 制剂治疗者。④ 入住 ICU 病房后 24 h 内死亡者。 ⑤ 处于妊娠期或哺乳期女性。符合纳排标准,对入 住 ICU 患者评估诊断为脓毒症后的 24 h 内采集外 周血样本,保存于乙二胺四乙酸(ethylene diamine tetraacetic acid, EDTA) 抗凝管中,4 ℃条件下,560 r/

2025 - 07 - 19 接收

基金项目:贵州省普通高等学校青年科技人才成长项目(编号:黔教 合 KY 字[2022]234)

作者简介:应流念,女,副主任医师,硕士研究生;

钟 毅,女,主任医师,硕士生导师,通信作者, E-mail: 490173559@ qq. com

min 离心 20 min,分离得到单核细胞样本后储存于-80 °C 冰箱,备用。同时,收集患者的性别、年龄、白细胞(white blood cell, WBC)计数、CRP、PCT、IL-6、APACHE II 和 SOFA 评分等临床信息。APACHE II 评分总分为 71 分,分值越高表示疾病越严重;SOFA 评分总分为 24 分,分值越高器官衰竭越严重[8-9]。

本研究已获得贵州医科大学附属医院学术伦理委员会批准,且入组前均已向所有参与者或其法定监护人提供书面知情同意书。伦理批件号:2023 伦审第(673 号)。

1.2 方法

- 1.2.1 生物信息学分析 从基因表达综合数据库 (gene expression omnibus, GEO) 中获取了脓毒症患 者血液样本数据集 GSE65682、GSE155952、 GSE63311、GSE138074,在 GSE65682 数据集中利用 R语言 limma 包绘制火山图,筛选差异表达基因,筛 选条件为 | log₂ (Fold Change) | > 1, P < 0.05; 在 GSE155952 数据集中利用 R 包: ChAMP 筛选差异 甲基化位点,筛选条件为 | Δbeta value | > 0.2,错误 发现率(false discovery rate, FDR) < 0.05。将差异 甲基化位点定位到基因上,将这些基因与差异表达 基因取交集,且只保留表达趋势相反的甲基化位点 及其对应的基因作为甲基化差异表达基因 (mDEGs)。然后基于 GEO 数据库筛选 mDEGs 构 建脓毒症风险模型,在建模队列,将 GSE65682 数据 集中468 例包含完整临床信息的脓毒症样本根据 7:3 比例分成训练集和测试集。在训练集中基于 mDEGs 进行卡普兰 - 迈尔(Kaplan-Meier, KM) 生存 曲线分析评估 mDEGs 是否和患者的生存相关;将 KM 分析中 P < 0.05 的基因用于单因素 Cox、LAS-SO 回归分析,以验证这些基因是否为危险因素,并 使用 LASSO 回归分析构建风险预测模型。
- 1.2.2 qPCR 法检测 mRNA 的表达 采用 TRIzol 法从脓毒症患者外周血单核细胞中提取得到 RNA,按照说明书反转录合成第一链 cDNA。使用实时荧光定量 PCR 试剂盒,按说明书进行 RT-qPCR 实验,反应条件为 95 ℃ 预变性 2 min;95 ℃ 变性 10 s,60 ℃退火/延伸 30 s,40 个循环。以 GAPDH 为内参,以 $2^{-\Delta\Delta C_T}$ 法计算出各基因的相对表达量。引物序列如下。RUNX3 上游引物:5′-AGCACCACAAGCCACT TCAG-3′,下游引物:5′-GGGAAGGAGGTCAAAC TG-3′;GAPDH上游引物:5′-GGAGCGAGATCCCTC CAAAAT-3′,下游引物:5′-GGCTGTTGTCATACT

TCTCATGG-3'

- 1.2.3 甲基化特异性 PCR 法 (methylating-specific PCR, MSP)检测 RUNX3 启动子区甲基化表达 用 DNA 提取试剂盒提取受试者外周血单核细胞中 DNA,使用 DNA 重亚硫酸盐转化试剂盒将 DNA 样 品中非甲基化胞嘧啶转化为尿嘧啶。使用 Methyl Primer ExPress v1.0 软件设计出甲基化引物和非甲 基化引物,引物序列如下。RUNX3 非甲基化引物 (unmethylation primer, UM), 上游引物序列: 5'-GAGTTGTGGTTAGGTTTTGGATTAT-3′,下游引物序 列: 5'-ACCACAACAATATTCCACACCA-3'; RUNX3 甲基化引物(methylation primer, M), 上游引物序列: 5'-TTGTGGTTAGGTTTCGGATTAC-3', 下游引物序 列:5'-CACAACGATATTCCACGCC -3'。将经过 DNA 重亚硫酸盐转化试剂盒处理后的样本按照设计好的 引物序列进行甲基化特异性 PCR, 扩增条件:95 ℃ 5 min 预变性,94 ℃ 20 s、60 ℃ 30 s、72 ℃ 20 s 进行 35 个循环,再以 72 ℃ 5 min 进行延伸,将扩增产物 经 160 V 琼脂糖凝胶电泳 25 min 后观察结果。
- 1.2.4 随访 脓毒症患者随访至住院期间死亡或 入组后第28天。在随访期间对死亡患者进行记录, 并计算28 d 病死率。根据脓毒症组在随访期间的 生存情况,将患者分为脓毒症生存组和脓毒症死亡 组,此外计算脓毒症组累积28 d 病死率。
- 1.3 统计学处理 应用 R 软件、SPSS 23.0 和 GradPad Prism 10.0 软件统计和作图,符合正态分布 的计量资料用均数 ± 标准差(\bar{x} ± s)表示,组间比较 行 t 检验,多组间比较采用单因素方差分析,方差不 齐时使用 Kruskal-Wallis 检验;偏态分布定量数据采用中位数及四分位间距[$M(P_{25}, P_{75})$]表示。计数 资料以率或构成比描述,组间比较采用 χ^2 检验。采用 Pearson 相关系数检验来分析脓毒症患者 RUNX3 与临床特征的相关性。使用 Kaplan-Meier 法分析累计生存情况,用 Cox 比例风险回归模型分析影响脓毒症的危险因素;P < 0.05 为差异有统计学意义。

2 结果

2.1 基因筛选及数据分析

2.1.1 基于 GEO 数据库筛脓毒症 DNA 甲基化标 志物 在 GSE65682 数据集利用 R 语言 limma 包绘 制火山图,共筛选了 1 026 个差异表达基因,其中表达上调的基因 456 个,表达下调的基因 570 个;接着在 GSE155952 数据集中,利用 R 包: ChAMP 筛选差异甲基化位点,共筛选到 2 124 个差异甲基化位点,

其中上调的甲基化位点 243 个,下调的甲基化位点 1881 个。见图 1。

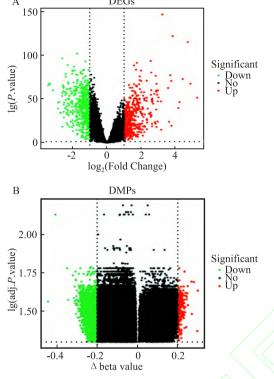


图 1 差异表达基因火山图(A)和差异甲基化位点火山图(B) Fig. 1 Volcano map of differentially expressed genes(A) and volcanic map of differential methylation sites(B)

2.1.2 基于 GEO 数据库筛选了 8 个 mDEGs 的脓

毒症风险模型的构建 在 GSE65682 数据集中,将 468 例包含完整临床信息的疾病样本根据比例 7:3 分成训练集和测试集,在训练集中基于89个 mDEGs 进行 KM 生存分析,鉴定了12 个 KM 显著的 基因(表1)。将这12个基因用于单因素 Cox、LAS-SO 回归分析,以验证这些基因是否是危险因素;单 因素 Cox 回归分析显示除了 PRR5L,其余11 个基因 的 P < 0.05 (图 2)。将这 11 个基因作为输入,在训 练集中构建 LASSO 回归模型;为减少特征维度,使 用R软件glmnet包,设置参数family="cox",实现 LASSO 逻辑回归分析,选择强相关特征,如图 3 所 示, 左图是基因系数的图形, 右图是交叉验证的误差 图,坐标 deviance 表示模型解释的残差的比例,显示 了特征基因数量随解释的残差的比例(dev)之间的 变化关系,纵坐标是基因的系数(左),横坐标是 log Lambda,纵坐标代表交叉验证的误差(右),在实际 分析中,该实验者希望交叉验证的误差最小的位置; 在右图形中,左侧虚线位置就是交叉验证误差最小 的位置,根据该位置(Lambda. min)确定对应的横坐 标 log Lambda,上边显示了特征基因的数目,找到最 优的 log Lambda 值,就左图中找到对应的基因和系 数,以及该模型解释的残差的比例,最终挑选 lambda 最小值的模型作为最终模型,得到8个模型基因 RUNX3 RASGRP1 MBOAT2 ILAR SLC7A6 TRIT1 BACH2 CTSG

Variable	HR	Lower 95%CI	Upper 95% <i>CI</i>	P value	
CTSG	1.191 7	1.063 5	1.335 4	0.002 5	(e)
RUNX3	0.651 8	0.483 7	0.878 3	0.004 9	l ⊕ l
BCL11B	0.691 5	0.527 1	0.907 1	0.007 7	 ◆
RASGRP1	0.658 1	0.478 8	0.904 5	0.009 9	I ◆ I
MBOAT2	2.299 3	1.214 1	4.354 3	0.010 6	—
IL4R	0.626 8	0.434 5	0.904 2	0.012 5	I ◆ I
SLC7A6	0.432 2	0.219 6	0.850 6	0.015 2	I ◆ -I
USP32	1.763 4	1.062 2	2.927 5	0.028 3	─
TRIT1	0.480 1	0.248 9	0.926 0	0.028 6	I ◆-I
NSUN3	1.288 5	1.020 6	1.626 8	0.033 1	◆ -1
ВАСН2	0.492 7	0.249 4	0.973 4	0.041 6	1
PRR5L	0.579 2	0.3198	1.049 1	0.071 6	★

图 2 单因素 COX 分析图 Fig. 2 Single factor COX analysis chart

表 1 mDEGs 的 KM 生存分析 Tab. 1 KM survival analysis of mDEGs

Gene	P value
MBOAT2	0.004 6
TRIT1	0.012 1
CTSG	0.012 4
SLC7A6	0.013 3
USP32	0.013 7
RASGRP1	0.020 2
IL4R	0.020 7
PRR5L	0.023 1
RUNX3	0.025 5
BACH2	0.027 5
NSUN3	0.028 0
BCL11B	0.035 5

2.1.3 预后 mDEGs 的表达和相关甲基化位点 β 值的验证 通过 GSE63311 和 GSE138074 验证了这 8 个基 因的表达量和 RUNX3 的甲基化位点 cg13461622。该实验分析了 GSE65682 数据集,比较了健康个体与脓毒症患者血液样本中这些 mDEGs 的相对表达水平,结果显示,在脓毒症状态下,CTSG、MBOAT2 和 IL4R 的表达水平上升,而RUNX3、RASGRP1、SLC7A6、TRIT1 和 BACH2 的表达水平下降;在 GSE63311 的数据集中,8 个 mDEGs 的表达也得到验证。见图 4A。在 GSE155952 数据集中,该实验识别出 8 个与预后相关的 mDEGs 信号甲基化位点;随后进一步验证了 GSE138074 数据集中这 8 个甲基化位点的 β 值,并确认了在脓毒症样本中,RUNX3 基因 cg13461622 的 β 值更高。见图 4B。

2.2 RUNX3 与脓毒症患者死亡的预测评估 收集的 120 例脓毒症患者中,存活组 70 例,死亡组 50 例,有 41.6% 患者在 28 d 内发生死亡,死亡组与存

活组的基线资料对比,见表 2;死亡组 RUNX3 水平均较存活组低,差异有统计学意义(P < 0.05),而死亡组 SOFA 评分、APACHE II 评分和 IL-6 均较存活组高,差异有统计学意义(P < 0.05),而 CRP、WBC 略高于存活组,但差异无统计学意义(P > 0.05)。在 RUNX3 表达下调 120 例脓毒症患者中,高达 91 例(75.8%)同时伴随启动子甲基化,死亡组甲基化比例较存活组高,差异有统计学意义(P < 0.05)。见表 3。

表 2 脓毒症死亡患者和脓毒症生存患者临床特征比较 $[n(\%), \bar{x} \pm s]$ Tab. 2 Comparison of clinical features between deceased patients with sepsis and surviving patients with sepsis $[n(\%), \bar{x} \pm s]$

Characteristics	Survival group (n = 70)	Death group $(n = 50)$	Statistical magnitude $t/\chi^2/Z$ value	
Gender			2.064	0.166
Female	18(25.7)	19(38.0)		
Male	52(74.3)	31(62.0)		
Age(years)	55.2 ± 14.6	59.2 ± 17.7	-1.304	0.181
Complication				
Hypertension	13(18.5)	13(26.0)	0.948	0.330
Diabetes	10(14.3)	10(20.0)	0.686	0.408
Respiratory tract infection	10(14.3)	6(12.0)	0.132	0.717
Abdominal infection	20(28.5)	10(20.0)	1.143	0.285
Urinary system infection	8(11.4)	6(12.0)	0.009	0.923
Other	9(13.0)	5(10.0)	0.231	0.631
APACHE I score	10.56 ± 1.37	24.46 ± 7.50	-2.696	0.008
SOFA score	6.56 ± 0.87	7.3 ± 1.08	-2.811	0.006
WBC(×10 ⁹ /L)	14.3 ± 9.72	17.1 ± 10.99	-1.524	0.139
PCT(ng/mL)	28.89 ± 37.40	27.27 ± 33.78	0.247	0.805
IL-6(pg/mL)	160.56 ± 0.37	197.56 ± 0.97	-2.097	0.039
CRP(mg/L)	100.56 ± 0.97	150.56 ± 1.82	-1.749	0.083
RUNX3 relative transcript level	1.36 ± 0.57	0.69 ± 0.72	-3.304	0.001

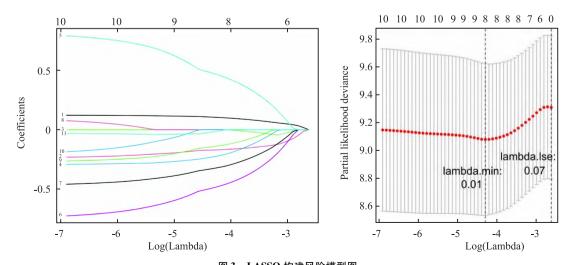


图 3 LASSO 构建风险模型图

Fig. 3 Diagram of LASSO construct risk model

图 4 8 个 mDEGs 的表达量水平(A)和 8 个 mDEGs 甲基化位点和 beta 值(B)

Fig. 4 The expression levels of 8 mDEGs(A) and the methylation sites and beta value of 8 mDEGs(B) $^*P < 0.05$, $^*P < 0.01$, $^*P < 0.001$,

表 3 RUNX3 基因启动子甲基化状态检测结果[n(%)] Tab. 3 Results of promoter methylation status detection of RUNX3 gene[n(%)]

Group	n	Methylation	Non-methylation χ^2 value	P value
Survival	70	48 (68.6)	22 (31.4)	
Death	50	43 (86.0)	7 (14.0) 4.834	0.028

2.3 RUNX3 在脓毒症组中与临床指标的相关性分析 采用 Pearson 相关系数检验来分析脓毒症患者 RUNX3 表达与临床特征的相关性。结果显示,在脓毒症患者中,RUNX3 与年龄、性别之间无相关性(P > 0.05),与 CRP、PCT、IL-6、SOFA 评分、A-PACHE II 评分存在相关性(P < 0.05),呈负相关。见表4。

表 4 脓毒症患者中 RUNX3 与临床指标的相关性
Tab. 4 Correlation between RUNX3 and clinical indicators
in patients with sepsis

Item A	PACHE II score	SOFA score	CRP	PCT	IL-6
RUNX3					
P value	0.001	0.002	0.003	0.001	0.001
r value	-0.593	-0.497	-0.425	-0.498	-0.525

2.4 甲基化与脓毒症患者的预后关系 通过用 Kaplan-Meier 法分析脓毒症患者 28 d 累计生存情况。结果显示,甲基化组累计生存率低于非甲基化组,差异有统计学意义(*P* < 0.05)。见图 5。

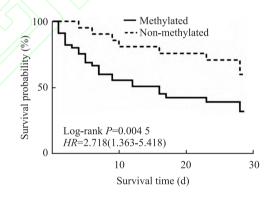


图 5 脓毒症患者甲基化组与非甲基化组 28 d 累计生存情况 Fig. 5 The cumulative survival of sepsis patients in the methylated group and the non-methylated group at 28 days

2.5 脓毒症患者预后的因素分析 单因素 Cox 回归分析结果显示: APACHE Ⅱ 评分、SOFA 评分、IL-6、RUNX3 启动子甲基化是脓毒症患者预后的影响因素,多因素 Cox 回归分析结果显示 RUNX3 启动子区甲基化、APACHE Ⅱ 评分是脓毒症患者预后的独立危险因素。见表 5。

3 讨论

脓毒症是一种危及生命的疾病,机制复杂,炎症 失衡与免疫抑制是脓毒症的重要病理生理机制^[10]。 尽管医疗救治取得了进展,脓毒症的预测指标如 PCT、CRP、APACHE Ⅱ评分、SOFA评分、IFN-γ等对

表 5 脓毒症患者 28 d 病死率预测因素分析	

Tab. 5 Analysis of predictive factors of 28-day mortality in sensis patients							
	Tah 5	Analysis of	nredictive	factors	of 28-day	mortality in	1 sensis natients

Characteristics -	Single factor analysis			Multiple-factor analysis		
Characteristics	P value	HR	95% CI	P value	HR	95% CI
Age	0.060	1.018	0.999 - 1.038			
APACHE II score	0.001	1.072	1.028 - 1.118	0.001	1.072	1.028 - 1.118
SOFA score	0.004	1.120	1.036 - 1.210			
WBC ($\times 10^9/L$)	0.058	1.024	0.999 - 1.050			
PCT (ng/mL)	0.677	1.002	0.994 -1.010			
IL-6 (pg/mL)	0.015	1.001	1.000 - 1.002			
CRP (mg/L)	0.203	1.002	0.999 - 1.004			
RUNX3 promoter region methylation	0.014	0.364	0.162 - 0.816	0.007	0.325	0.145 - 0.732

其相关性和预后也得到广泛的研究[11],但有效预测 脓毒症的生物标志物也尚不完全清楚,需要人类不 断去探索其他潜在生物标志物。DNA 甲基化是 DNA 甲基转移酶将甲基共价转移至胞嘧啶环中的 C-5 位置的过程,从而影响基因的表达,这种表观遗 传修饰与基因突变不同,是可逆的[12],因此,具有研 究靶向药物的价值。有研究[13]表明通过 DNA 甲基 化进行的表观遗传调控可能在脓毒症患者巨噬细胞 分化和外周血单核细胞炎症信号传导过程的免疫耐 受中发挥作用,甲基化重编程部分是由耗尽的单核 细胞中的 Wnt 信号传导抑制驱动的,并且可以通过 DNA 甲基转移酶抑制剂、Wnt 激动剂或免疫分子来 逆转[14]。RUNX3 是哺乳动物的三种 runt 结构域转 录因子之一, RUNX3 甲基化被认为是一种调节机 制,有助于调节免疫反应并保护身体免受过度炎症 的损害[15]。RUNX3 功能丧失变异可能引起免疫调 节紊乱、肠道菌群失调和炎症等相关疾病[16]。有研 究[17] 显示,通过 RUNX3 上调增强多形核中性粒细 胞凋亡并抑制 Janus 激酶 2/信号转导和转录激活因 子3磷酸化,急性重症胰腺炎大鼠中RUNX3过表达 使其相关的急性肺损伤得到改善。Tserel et al^[18]的 一项研究表明了 RUNX3 甲基化和表达之间存在很 强的负相关。

本研究采用生物信息学策略,基于脓毒症患者 基因表达谱数据集,揭示了一系列与脓毒症预后相 关的 DNA 甲基化驱动的差异表达基因,并筛选出目 标基因 RUNX3。通过结合脓毒症患者的临床数据 进行相关性分析,本研究为 RUNX3 作为潜在生物 标志物的评估提供了直接的证据。本研究首次探讨 了 RUNX3 启动子区域的甲基化状态与脓毒症预后 之间的关联,临床研究分析了 120 例脓毒症患者中 存活与死亡情况,发现脓毒症死亡组中 RUNX3 的 相对表达量低于存活组,其甲基化比例高于存活组, 由此可以推测 RUNX3 低表达、高甲基化与脓毒症 的发生密切相关,而且这种高甲基化与脓毒症更差 的生存结局有关。本研究揭示了 RUNX3 作为预测 脓毒症风险、评估疾病严重程度及死亡风险的生物 标志物的潜力,并为后续研究提供了数据支持。研 究目标是通过干预特定基因的甲基化状态来治疗脓 毒症。本研究在该领域填补了研究空白,并为临床 决策和治疗策略提供了新的研究方向和指导。尽管 本研究为 RUNX3 在脓毒症预后中的价值提供了新 的见解,但研究仍存在局限性。首先,由于样本量相 对较小,临床数据收集存在客观局限性,患者细胞免 疫检查资料如 CD8 T 细胞的比例、数量、CD4/CD8 细胞比例及脓毒症经典细胞因子如 TNF-α、IL-18 未 能收集完善以及部分数据缺失,同时,收集的脓毒症 患者中诊断脓毒症休克的比例较高,最终的统计病 死率较高,因此,相关研究结果的普遍适用性需要进 一步验证。其次,尽管该研究观察到了 RUNX3 启 动子区域甲基化与脓毒症预后之间的关联,但其具 体的作用机制尚不完全明确。未来的研究应考虑通 讨更大规模、多中心的合作来提高样本的代表性,并 利用更先进的分子生物学技术,例如单细胞测序,来 深入探索这一机制。此外,进行长期随访研究也是 必要的,以便更全面地理解 RUNX3 启动子区域甲 基化对脓毒症患者长期预后的影响。

综上所述,本研究表明了 RUNX3 在脓毒症患者中呈低表达和高甲基化状态,RUNX3 启动子区甲基化可能导致了脓毒症发生和更差的生存结局,这可能是脓毒症患者预后的关键性靶点,值得在未来继续进行研究。

参考文献

[1] Nunnally M E, Ferrer R, Martin G S, et al. The Surviving Sepsis Campaign: research priorities for the administration, epidemiology, scoring and identification of sepsis [J]. Intensive Care Med

- Exp, 2021, 9(1): 34. doi:10.1186/s40635 021 00400 z.
- [2] Rudd K E, Johnson S C, Agesa K M, et al. Global, regional, and national sepsis incidence and mortality, 1990 2017; analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395 (10219); 200-11. doi:10.1016/S0140-6736(19)32989-7.
- [3] Mevel R, Draper J E, Lie-A-Ling M, et al. RUNX transcription factors: orchestrators of development [J]. Development, 2019, 146(17): dev148296. doi:10.1242/dev.148296.
- [4] Lorente-Pozo S, Navarrete P, Garzón M J, et al. DNA methylation analysis to unravel altered genetic pathways underlying early onset and late onset neonatal sepsis. a pilot study[J]. Front Immunol, 2021, 12: 622599. doi:10.3389/fimmu.2021.622599.
- [5] Cao L, Zhu T, Lang X, et al. Inhibiting DNA methylation improves survival in severe sepsis by regulating NF-κB pathway[J]. Front Immunol, 2020, 11: 1360. doi:10.3389/fimmu.2020.01360.
- [6] Lotem J, Levanon D, Negreanu V, et al. Runx3 at the interface of immunity, inflammation and cancer [J]. Biochim Biophys Acta, 2015, 1855 (2): 131 - 43. doi:10.1016/j.bbcan.2015.01. 004.
- [7] Singer M, Deutschman C S, Seymour C W, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8): 801 10. doi:10.1001/jama. 2016.0287.
- [8] Knaus W A, Zimmerman J E, Wagner D P, et al. APACHE—acute physiology and chronic health evaluation: a physiologically based classification system [J]. Crit Care Med, 1981, 9(8): 591
 –7. doi:10.1097/00003246-198108000-00008.
- [9] Vincent J L, Moreno R, Takala J, et al. The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European society of intensive care medicine [J]. Intensive Care Med, 1996, 22(7): 707 10. doi:10.1007/BF01709751.
- [10] Liu D, Huang S Y, Sun J H, et al. Sepsis-induced immunosup-

- pression: mechanisms, diagnosis and current treatment options [J]. Mil Med Res, 2022, 9(1): 56. doi:10.1186/s40779 022-00422-v.
- [11] Pierrakos C, Velissaris D, Bisdorff M, et al. Biomarkers of sepsis: time for a reappraisal [J]. Crit Care, 2020, 24(1): 287. doi:10.1186/s13054-020-02993-5.
- [12] Moore L D, Le T, Fan G. DNA methylation and its basic function [J]. Neuropsychopharmacology, 2013, 38(1): 23 38. doi: 10.1038/npp.2012.112.
- [13] Lorente-Sorolla C, Garcia-Gomez A, Català-Moll F, et al. Inflammatory cytokines and organ dysfunction associate with the aberrant DNA methylome of monocytes in sepsis[J]. Genome Med, 2019, 11(1): 66. doi:10.1186/s13073-019-0674-2.
- [14] Caldwell B A, Wu Y, Wang J, et al. Altered DNA methylation underlies monocyte dysregulation and immune exhaustion memory in sepsis[J]. Cell Rep, 2024, 43(3): 113894. doi:10.1016/j. celrep. 2024. 113894.
- [15] Dybska E, Nowak J K, Banaszkiewicz A, et al. Methylation of RUNX3 promoter 2 in the whole blood of children with ulcerative colitis [J]. Genes, 2022, 13 (9): 1568. doi: 10. 3390/genes13091568.
- [16] Bhuyan Z A, Rahman M A, Maradana M R, et al. Genetically encoded Runx3 and CD4 ⁺ intestinal epithelial lymphocyte deficiencies link SKG mouse and human predisposition to spondyloarthropathy[J]. Clin Immunol, 2023, 247: 109220. doi:10.1016/j.clim.2022.109220.
- [17] Li S, Cui H Z, Xu C M, et al. RUNX3 protects against acute lung injury by inhibiting the JAK2/STAT3 pathway in rats with severe acute pancreatitis [J]. Eur Rev Med Pharmacol Sci, 2019, 23 (12): 5382-91. doi:10.26355/eurrev_201906_18207.
- [18] Tserel L, Kolde R, Limbach M, et al. Age related profiling of DNA methylation in CD8⁺ T cells reveals changes in immune response and transcriptional regulator genes[J]. Sci Rep, 2015, 5: 13107. doi:10.1038/srep13107.

Predictive value of methylation of RUNX3 promoter region in 28-day prognosis of patients with sepsis

Ying Liunian¹, Liu Lei^{1,2}, Zhang Ying^{1,2}, Yin Yongqiang¹, Zhong Yi²
(¹School of Anesthesiology, Guizhou Medical University, Guiyang 550004; ²Dept of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004)

Abstract *Objective* To investigate the methylation status of the RUNX family transcription factor 3 (RUNX3) promoter and its mRNA expression in sepsis patients, and to analyze their relationship with the prognosis of sepsis. *Methods* Differentially expressed genes related to sepsis, including RUNX3, were identified from multiple datasets obtained from the gene expression omnibus (GEO) database. The gene expression and methylation sites were validated. A total of 120 patients with sepsis were included. Clinical data were recorded, and blood samples were collected at enrollment. Relative expression levels of RUNX3 in blood samples and promoter methylation status were detected using qPCR and methylation-specific PCR (MSP), respectively. Pearson correlation coefficients were used to analyze the correlation between RUNX3 levels in patient blood and clinical indicators. Kaplan-Meier analy-

sis was performed to plot survival curves, and Cox proportional hazards regression analysis was conducted to identify factors affecting the prognosis of sepsis patients. **Results** Data set analysis revealed that RUNX3 was a differentially methylated gene associated with the prognosis of sepsis. The mRNA expression level of RUNX3 was lower in the non-survivor group compared to the survivor group (P < 0.05), and the methylation ratio of RUNX3 was higher in the non-survivor group than in the survivor group (P < 0.05). In sepsis patients, RUNX3 mRNA expression levels were negatively correlated with interleukin-6 (IL-6), procalcitonin (PCT), C-reactive protein (CRP), acute physiology and chronic health evaluation (APACHE II) score, and sequential organ failure assessment (SOFA) score. Kaplan-Meier analysis showed that the 28-day survival rate in the methylated group was lower than that in the unmethylated group (P < 0.05). Cox regression analysis results indicated that RUNX3 promoter methylation was an independent risk factor for predicting the 28-day prognosis of sepsis patients. **Conclusion** In sepsis patients, the mRNA levels of RUNX3 were reduced, and the degree of promoter methylation was higher. RUNX3 promoter methylation was an independent risk factor for the 28-day prognosis of sepsis patients and could serve as a prognostic biomarker for sepsis.

Key words sepsis; RUNX family transcription factor 3; methylation; inflammatory response; biomarker Fund program Youth Science and Technology Talent Training Project of Higher Education Institutions in Guizhou Province (No. Qianjiaohe KY Document [2022] 234)

Corresponding author Zhong Yi, E-mail: 490173559@ qq. com

(上接第1923页)

that of conventional tests, and the difference was statistically significant (P < 0.05). Although the fungal detection rate of mNGS was higher than that of conventional tests, the difference was not statistically significant. Among them, the detection rates of Mycobacterium tuberculosis, Mycoplasma pneumoniae, Haemophilus influenzae, Streptococcus pneumoniae, Streptococcus constellation, Staphylococcus aureus and Aspergillus fumigatus were significantly higher than those of conventional tests, and the difference was statistically significant (P < 0.05). Subgroup analysis showed that the proportion of males, hospital stay, smoking prevalence and average age in the underlying disease group were higher than those in the non-underlying disease group, and the difference was statistically significant (P < 0.05), while there were no significant differences in antibiotic use and endotracheal intubation rate between the two groups. The most common pathogens detected by mNGS in the underlying disease group were Mycobacterium tuberculosis, Haemophilus influenzae, Streptococcus pneumoniae, Pseudomonas aeruginosa, human herpesvirus type 4 and Aspergillus fumigatus, while the most common pathogens in the non-underlying disease group were Mycobacterium tuberculosis, Haemophilus influenzae, Streptococcus pneumoniae, Mycoplasma pneumoniae and Klebsiella pneumoniae. The positive rate of mNGS in the two groups was significantly higher than that of conventional tests, and the difference was statistically significant (P < 0.05), while the difference in the positive rate of mNGS between the two groups was not statistically significant. *Conclusion* mNGS has significant advantages over conventional tests of pathogen in lung infection, and is less affected by underlying diseases, which can provide an etiological basis for lung infection.

Key words pulmonary infection; metagenomic second generation sequencing; mNGS; conventional detection; alveolar lavage fluid; underlying medical conditions; pathogen

Fund program Natural Science Foundation of Sichuan Province (No. 2022NSFSC1306)

Corresponding author Deng Jun, E-mail: dj2882@ sina. com