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P& 1% (https : //pubchem. ncbi. nlm. nih. gov) FRE# H-
S T A5 R 5 IR S A LU 204 Pharm-
Mapper ( https://www. lilab — ecust. cn/pharmmap-
per) | Swiss Target Prediction ( https://www. swisstar-
getprediction. ch ) | BATMAN-TCM ( https://bionet.
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genes and genomes, KEGG) 8% 5 £ 54 KHR

BAFVEH org. Hs. eg. db . enrichplot | clusterProfiler &5
PP, B e AC ML sS4 PR GE— ) entrez 1D, B )5
#4T GO LIREM KEGG g% w501 . B{H I E an
T:P<0.05,Q(RIEJEH P {H) <0.05, 4% Q {iHE
JF CH/MEIR) FF GO & S 4 3T 10 i KEGG
BN 20 745 R AT AT AL

1.2.5 “FHFx_-fei-@% Mivts BE
H SRS AT 20 45 KEGG il %5 B 5 A Cyto-
scape 3. 8.0 A, My« 45 B85 — O - E KT W
%,

1.2.6 »-Fxr#ikie 2 PDB KU 4 (hitps://
www. resb. org ) PRAFAZLOHE S (“1.2. 37 5) 19 3D &5
4, {8 PyMol %4 25 % 53 5 /N o3 T FK 43 F I 4k
HEAZK, 2 H PubChem £¥E % (https://pub-
chem. ncbi. nlm. nih. gov) I Chem3D #X {3545 & H-
13D S5, Lhdse/ I B ER RE XTS5 A8 HEAT AR ) 3k
BB, 8] AutoDock Tools 1. 5. 6 H1 {4 3E
(e =XEPOE:S , X & F 28O E . Spacing ( ang-
strom) A 1. 000, & T N 7 35 T A WG P 8,
AutoDock vina FAFHAT /3T X 42, 455 RE(E SR
FaEMERU I . IR TR S A PyMol 4 4
HEAT AT LA

1.3 ZHAESCLE

1.3.1 @mfaizdc TUITT @HHEA 10% G410
. 1% 7 8 5 % AUPL K RPMI-1640 8 57 3, F
37 C 5% CO, MIEFM TG, A KEER
80% I &M 1 - 2 801 ¢ 3 HflfL1t,

1.3.2 CCK-8 Htmmpaiz A Wik uE
KIE TUL77 ML) 4 x 10° A/ LR T 96 LR
o Rk 24 hJE, SRR BT, 4 0IA 100 pL
AIRIHSE (0.1.2.4.8 12,16 wmol/L) & H- 5 25
(RE I B 6 DAL, T 37 CRE IR ak &k
W59% 24 48 h, A& 10% CCK-8 x5 it 55 75 K&
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193 159 2751
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Fig.1 The venn diagram of intersection targets

of Xanthatin and LSCC
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FEFIE (7. 25 .0.56 7. 00 0. 18 3.33 4.40) , FiFE L
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2.1.4 GO F4t5 KEGG @3 F £ &R GO
Uife s IR 2 455 4 H , Horp A= W3 2 (bio-
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Fig.2 Core targets of Xanthatin against LSCC screened by PPI network
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logical processes,BP)2 201 />, 4l 44 43 ( cell compo-
sition, CC) 71 /™, 43T I HE ( molecular functions, MF)
183 1~ BP FE9 X 4 B Ui 43 - L ( response to
molecule of bacterial origin) /M HIEL 52 ( response
to xenobiotic stimulus) 55 ; CC T Z 9 M 8 1 (vesicle
lumen) 7KL 45 1 (secretory granule lumen) 55
MF 29 K 25 1 I 28 TR % % ( protein tyrosine
kinase activity ) 4% 32 /K15 P (nuclear receptor activi-
ty) %, UL 3, KEGG i@ 43 172 4 H 1L

3 GOYREESTEHRE

Fig.3 GO functional enrichment analysis histogram

Kl 4, HE4 55 BT ELFN LSCC AH 6 1Y 3 B% 35 B 40 45
PI3K-Akt {553 % \MAPK {5553 % Ji i AH O3 B
('prostate cancer , pancreatic cancer, proteoglycans in
cancer ) &,

2.1.5 “#hip -k - @R MEHHhE A4
— N S M LI 5 I M 4E AL EE 595 ki A
181 AN A5, BN H2 159 AN 5 5 20 40 % 22 7]
FAAETT 595 M E LRI R . AR A5 s (]
B R, 259 0 SR 2 [B) R e A7V AE AR
HAEHER R R Bt 2505 £
HEEAEH T LSCC,

Gene ratio

E 4 KEGGEHEESNTSAE
Fig.4 KEGG pathway enrichment analysis bubble diagram

5 “BHS-Bx - @R NEE
Fig.5 “Xanthatin-Target-Pathway” network

Yellow square represents Xanthatin; Pink hexagon represents the disease; Green V-shape represents the pathway; Cyan octagon represents the target;

The size of the target node is positively correlated with its importance in the network.



M BEMKFFE® Acta Universitatis Medicinalis Anhui 2025 Dec;60(12)

- 2293 -

2.1.6 5Tt R ZEAHREMUN, MRS,
CHE5ZOM N TS G EEY < -5 K/
mol, KZH < -7 kJ/mol, W T A H G456 151
RAr, Wk 1, Mg R, w55 LSCC M
SOV HE 257 22 [) ELA AR SR A S | TR, 3o S 057 7
REHERYT LSCC 1 AR A

£1 BESSROBANSFHEESHE
Tab.1 Molecular docking binding energy of

Xanthatin and core target

Ligands Receptors PDB ID Binding energy (k]/mol)
AKT1 4GV1 -7.4
MAPK14 6SP9 -7.8
MAPKI1 4FUX -6.8
Xanthatin MAPKS8 S8R5E -7.7
SRC TNG7 -8.7
JUN 5T01 -7.5
ESR1 6VJD -7.7

Xanthatin-AKT1

Xanthatin-MAPKS

Xanthatin-JUN

SHEARE < -7 k)/mol W& HEAT AT RAL, [F]
Bbhr it &, IRl 6, S H-=rl 4351 5 AKT f3&
f i ASP-274 2 i U6 5 5 MAPKI4 1936 1 A7
ASP-112 JE RSV ; 5 MAPKS A6 PEN7 45 LYS-55 .
ASN-156 JE &S ; 5 SRC (T PEA7 5 ASP407 1
AU ; 5 JUN AOIGPENL S ARG207 TE LA ; 5
ESR1 BTG PENL A GLU-353 JE RS S,

2.2 ‘ARARIE

2.2.1 CCK-8 ##R HAFMKERN®EHS(0,
1.2.4.8.12.16 wmol/L) 4L H TU177 41 il 24 .48 h
J& AR R B HsE RT] TUL77 AR 77, H
SRRV R DLIE 7, 24 48 h 1B ik
43509 3.52 1. 42 pmol/L, I ABF5E 388 1 2 4
pmol/L B 52 4b 38 24 h 1 Jy 5 22 5236 10 T 191 5%
(Ga8

2.2.2 FRAEBZERZR HAMKRERNEHES

Xanthatin-MAKP14

Xanthatin-SRC

Xanthatin-ESR1

6 BEES=S5ZOMANTHEER

Fig.6 The conformation of Xanthatin docking with core target molecules

Green is Xanthatin; Cyan-blue is core target active site; Yellow dotted line is hydrogen bonding.
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W1,5 0 wmol/L 45 H-5= [ #L, 1 wmol/L )45 H-5%
XF TUL77 2 Hf e BT 1 E 71 T2 ,2 (4 wmol/LL 1)
CHEARE R A H T TU177 40068 1) 7 BB Al
AEJI(P<0.01.P <0.001), H 5 ue B, WL
8, PRt H- SR TU177 40M A3
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1 wmol/L vs X HRZA G ¥E/F 2] 3 4~ DEGs, Horfr I
ﬁ% 2 /l\,—FlJ%—J% 1 /l\,ésﬁi’?; 2 }Lmol/L Vs 5(\‘]‘
TRZ i 615 3 85 4> DEGs, Horp FIRZE 36 4>, F
JHILIE 49 4 B EAE 4 ol /L s 4L i 1
342 /> DEGs, ot F i3 150 4, FiHEE 192
AU 9A -9C, LTI UL, Bl 45 H50 45 24 Tk B
(A, DEGs B8 W 3

B 150
100
X
~ *
2 T
E
<
=
5
O 50
*
-
. —
0 1 2 4 8 12 16

Xanthatin (umol/L)

El7 CCK-S8 ®ilNEE=x3 TU177 HHK 4 E %
Fig.7 The cytotoxicity of Xanthatin on TU177 cells was detected by CCK-8
A'; The cell viability of TU177 cells treated with Xanthatin for 24 h; B: The cell viability of TU177 cells treated with Xanthatin for 48 h; * P <0. 05

vs 0 pmol/L Xanthatin.

0 pmol/L 1 pmol/L

2 umol/L 4 umol/L

B 1.5¢
.2
= L.OF
-
o
g #
o =
2
= %k %
= 0.5h ——
o
(=4
0
0 1 2 4

Xanthatin (pmol/L)

8 PiRGEESMHNETES= TU177 AAETHEE AR
Fig.8 The effects of Xanthatin on the proliferation of TU177 cells were investigated by plate cloning

A Plate clone results x100; B: Quantitative analysis of plate clone number; ** P <0.01,

" P<0.001 vs O wmol/L Xanthatin.
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Fig.9 Transcriptome analysis of Xanthatin against LSCC

A DEGs volcanic map of Xanthatin 1 wmol/L vs control group; B: DEGs volcanic map of Xanthatin 2 pmol/L vs control group; C; DEGs volcanic

map of Xanthatin 4 pmol/L vs control group; D: GO functional enrichment analysis diagram of DEGs; E: KEGG pathway enrichment analysis diagram of

DEGs.

I HZ 4 wmol/L vs X HRZH Y DEGs 17
B, Count (HAEHTIY 2% BT ML, GO
Difg e L5 R ILE oD, S Mg A i s a4 H B2
W RNy TR L FR B IR T DNA 255 56 S 30
SRR IE PSS . KEGG 38 % 5 45 25 5 WL B 9F,
DEGs 2 E 4T MAPK {5538 #5808 176 H
PRI PP T PIBK-Akt 515 500 %, W% 4w 4
SIMTARAR ) KEGG 38 %15 1 A o £ 24 B~ i 1k 1
[ 172 STmBRAT L, R TR 149 S5AL[alim ik, W) & R K
86. 6% i —LAIESE T W) 45 245 B2 R0 25 R 11 W] 5
Pk, EIL A P, AR EF AR LS 1SCC % VA 5
(%) PI3K-Akt {5538 B A7 5 22 AL I
2.2.4 Western blot 52345 %  Western blot 73874k
REW, 50 pmol/L WEHZILHK,2 4 pmol/L &

H2 4B p-PI3K Fl p-Akt EAMERB FHE(P <
0.01 B, P <0.001) , H 2 PR EMKmiTE, WA 10,
DRI, 405 B2 0T g 3 e 145 PI3K-Ake {7553
RHEPT LSCC A,

3 it

UEAEAE , KAIRAL 25 12 W oA Bt e Jeg 245 W ik
M E E BT — AR R W AR T T B, P 2
PR HC 22 0 R A 0 D0 B8 53R A /N 1 A T i
2R, EHTRAPHEY G0 TR S
SRS, — R T I AR e e b 25, BA Bt R
S HUIMRE | I IR 0T B S AR
ZHIT B ING s SR IEE R S HS RS
By S U A5 w5 A R A= s L 5
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A Xanthatin (umol/L)
0 1 2 4 ku
PI3K 85
p-PI3K 85
Akt 60
p-Akt 60
GAPDH 36

Relative protein expression

Bl 0 pmol/L Xanthatin

1.5r 31 pmol/L Xanthatin
2 pmol/L Xanthatin
34 umol/L Xanthatin
1.or
0.51
0

p-PI3K/PI3K p-Akt/Akt

10 Western blot #& T E =Xt TU177 40A PI3K-Akt {5518 B A 20
Fig.10 The effects of Xanthatin on PI3K-Akt signaling pathway in TU177 cells was detected by Western blot analysis

A Protein bands associated with the PI3K-Akt signaling pathway; B: Quantitative analysis of p-PI3K and p-Akt; ** P <0.01,

0 pmol/L Xanthatin.

BHFENTEEN S Z —, SRR R,
B A 3 Ak 22 b T 9 e R ) A R i
PR A K T A A5 5 5 ] STAT3
{55300 1% I 18 3% vk A AR R IR W/ B-
catenin {5 5 % , 1] B-catenin BEERL' ") ; 18 341
il mTOR {55 38 8% , 5% el fith 928 4 B 1Y) 32 7% 542 28,
T st 37 7 R QI AR, DA & 22 7 P g £ P
&, HEWA U, & B8 & —Fhil E g )
TR TSR 259

1 PPI W 4% n] 15, AKT1 ., MAPK14 . MAPKS .
SRC JUN ESRI & H-56 77 LSCC %0 HE A,
AKTI B #%3E B 7E LSCC " i JE £ k1P| Zhu et
al " RGE T OB A R A R A S PI3K-Akt {5
T A LSCC H Y LS A B DA S LSCC 4 if 1
% . MAPK14 . MAPKS 4 J& MAPK Z % 19 Wi b1 |
MAPK {553 f H —S6 3L R 223K, U p38B L INK2 |
ERK2 ¥] 5 1.SCC WA X" . Chan et al'™ BYHF
TR T SRC 5 BEAE M PI3K-Akt/B-catenin 2% 5k
FNARAL, 25 Bk LSCC 20 M iT £ A2k Kt 7,
Almouhanna et al'™® JIFSZ T ESR1 #5638 i 2 53k 5
S bR 24 B e TR 7 3 2 23 [ X LSCC MR T ]
REAATE — E I TEM (. SRR U, X SL 8l S 7E
LSCC My k& i v R AR, & 1LSCC H
() E I 345 TR (R 78 LA ALY T 2 A S A )

> 20
ORI

TP <0.001 vs

KEGG 3 j% & 540 15 1] i 3 I A0 55 PI3K-Akt
T MAPK {5510 % LR 8 AF G 6, 1 S0 i
¥I5 LSCC MK, A FRHEG R BN, B HE 5%
DS LSS RERZE < -7 kI/mol, KW G H- 5
L Ul o 2 (Rl B BRI ES & 1, I B TS
R, WIAARAIE T 4 H 52 RE A 3 o 22 98 i e R b
BN o e AL BT 25 SRt — 25 BIE T I 2% 24 Bl
T, EAN 256 b AL T S EE X TULTT 40
JH 3% 7 S HEFE O R , F X PI3K-Akt {5 538 B 7R A T
TIRUE, & IS EEaE 2 v AR X B o T 4 B T
FI 5 HAG I E AR T PIBK Akt B #ERR LK -,
X UeE W] A4 PIBK-Akt 15538 % 7] AE R 5 H-
R LSCC (AL 2 —

25 Lk 4w B nl i@ i 1 PI3K-Akt {5 5
%, 520 TU177 4T 7, A3 LSCC 4 ey
FAMIVER . AR 8 B2 AE LSCC IR YT H i I
PEHE T AT IS HE (AR SCAIL I A4 B AR AT AN 42 1T, A
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Investigating the mechanism of Xanthatin in inhibiting proliferation of
laryngeal squamous cell carcinoma cells based on network pharmacology,

transcriptomics, and experimental validation
Ma Zichuang', Su Dan’, Wang Chun’, Wu Na*, Wang Haikun'*, Shen Aizong’
('School of Pharmaceutical Sciences, Anhui Medical University, Hefei 230032 ; >Health Management Center
The First Affiliated Hospital of University of Science and Technology of China, Hefer 230001 ;
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Abstract Objective To investigate the potential mechanisms of Xanthatin in inhibiting the proliferation of laryn-
geal squamous cell carcinoma (LSCC) cells by integrating network pharmacology and in vitro experiments. Meth-
ods The targets of Xanthatin were identified using databases such as PharmMapper, while disease-related targets
for LSCC were obtained from databases such as DisGeNET. The overlapping targets between Xanthatin and LSCC
were determined by intersecting these datasets. A protein-protein interaction ( PPI) network was constructed based
on the overlapping targets, and key targets were identified. Gene ontology (GO) and Kyoto encyclopedia of genes
and genomes ( KEGG) enrichment analyses of the overlapping targets were performed using R software. A " Xantha-
tin-target-pathway" network was visualized using Cytoscape 3. 8. 0 software. The preliminary validation of the afore-
mentioned results was performed using molecular docking and transcriptomics. The effects of Xanthatin on the pro-
liferation of TU177 cells were assessed using CCK-8 and colony formation assays. Additionally, Western blot analy-
sis was employed to measure the expression levels of PI3K, p-PI3K, Akt, and p-Akt proteins. Results A total of
159 overlapping targets between Xanthatin and LSCC were identified, and seven key targets, including AKT1, were
screened. GO enrichment analysis yielded 2 455 entries, and KEGG enrichment analysis identified 172 pathways,
such as the PI3K-Akt signaling pathway. Xanthatin exhibited favorable binding activity with the core target proteins
of LSCC in molecular docking experiments. The transcriptomics results showed high consistency with the predictions
from network pharmacology. CCK-8 and colony formation assays demonstrated that Xanthatin at concentrations of 1,
2, and 4 pmol/L significantly inhibited the proliferation of TU177 cells in a dose-dependent manner. The expres-
sion levels of p-PI3K and p-Akt proteins decreased with increasing concentrations of Xanthatin. Conclusion Xan-
thatin may exert an inhibitory effect on the proliferation of LSCC cells by modulating the PI3K-Akt signaling path-
way.

Key words network pharmacology; Xanthatin; laryngeal squamous cell carcinoma; molecular docking; cell ex-
periments; PI3K-Akt signaling pathway ; transcriptomics; experimental validation

Fund programs Clinical Medical Research Translational Project of Anhui Province (No. 202304295107020095) ;
Key Research and Development Project of Bozhou (No. bzzc2022015)

Corresponding author Wang Haikun , E-mail : Haikunwangl985@ outlook. com



