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机器学习联合生物信息学
探究系统性红斑狼疮诊断相关生物标志物
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摘要　 目的　 基于机器学习算法和结构生物学预测，筛选系统性红斑狼疮（ＳＬＥ）的潜在生物标志物，揭示其作用机制，为 ＳＬＥ
诊断和治疗提供新靶点。 方法　 利用随机森林（ＲＦ）、极限梯度提升算法（ＸＧＢｏｏｓｔ）、支持向量机（ＳＶＭ）、最小绝对收缩和选

择算子（ＬＡＳＳＯ）４ 种机器学习算法，分析基因表达综合数据库 ＧＥＯ（数据集：ＧＳＥ１２１２３９ 和 ＧＳＥ１１９０７）中 ＳＬＥ 患者基因表达数

据，筛选关键标志物。 收集 ＳＬＥ 患者外周血单个核细胞（ＰＢＭＣｓ），采用 ＲＴ⁃ｑＰＣＲ 法检测差异基因的表达水平。 利用 ＧＳＥＡ 富

集分析来确定生物标志物相关通路。 应用 ＣＩＢＥＲＳＯＲＴ 免疫浸润分析和蛋白互作网络计算样本免疫细胞浸润丰度。 分析单

细胞数据在免疫细胞中的基因表达特异性，并结合 ＡｌｐｈａＦｏｌｄ３（ＡＦ３）预测相互作用关系。 结果　 多种算法一起筛选出独特的

标记基因 ＨＥＲＣ５；多个数据集的表达分析显示，与正常组相比，ＨＥＲＣ５ 在 ＳＬＥ 中高表达（Ｐ ＜ ０. ０５），ＲＴ⁃ｑＰＣＲ 验证了相同的趋

势（Ｐ ＝ ０. ００６ ２）。 功能富集分析确定 ＳＬＥ 中 ＨＥＲＣ５ 促进的主要途径为干扰素受体信号通路（Ｐ ＜ ０. ０５）。 免疫浸润分析显示

ＨＥＲＣ５ 与免疫细胞密切相关（中性粒细胞：ｒ ＝ ０. ３９，Ｐ ＜ ０. ０５；记忆 Ｂ 细胞：ｒ ＝ ０. ３３，Ｐ ＜ ０. ０５；激活的树突状细胞：ｒ ＝ ０. ５２，
Ｐ ＜ ０. ０５）。 大多数 ＨＥＲＣ５ 相关相互作用蛋白与 ＳＬＥ 相关，ＨＥＲＣ５ 及其相关基因的潜在转录因子也与免疫反应显著相关。
结论　 ＨＥＲＣ５ 基因是 ＳＬＥ 重要的生物标志物，其可能通过干扰素通路促进 ＳＬＥ 进展，为 ＳＬＥ 诊断和治疗提供新靶点。
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疫性疾病，该病核心特点是免疫系统过度激活，导致

皮肤、肾脏等多脏器功能损伤［２］。 然而，ＳＬＥ 的发病

机制尚不清楚。 目前，ＳＬＥ 患者的临床症状轻重不

一，且临床表现具有高度异质性，导致其诊断和治疗

极具挑战性。
　 　 目前，ＳＬＥ 的诊断主要基于欧洲抗风湿病联盟 ／
美国风湿病学会分类标准，结合抗双链 ＤＮＡ 抗体、
抗核抗体和抗史密斯抗体等血清标志物及临床表

现［３］。 尽管一些新型基因标志物如黏病毒耐受蛋

白 ２、Ｄｅｌｔｅｘ Ｅ３ 泛素连接酶和 Ｄｉｃｋｋｏｐｆ 相关蛋白 １
等［４ － ６］显示出潜在的诊断价值，但其临床应用仍受

限于敏感性和特异性不足等问题，仍需进一步探索
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更稳定、更具特异性的生物标志物，以提高 ＳＬＥ 的

早期诊断和精准分型。 基于此，该研究选择基因表

达数据库（ｇｅｎｅ ｅｘｐｒｅｓｓｉｏｎ ｏｍｎｉｂｕｓ，ＧＥＯ）平台，运用

生物信息学结合机器学习，鉴定 ＳＬＥ 关键生物标志

物，利用逆转录定量聚合酶链式反应（ ｒｅｖｅｒｓｅ ｔｒａｎ⁃
ｓｃｒｉｐｔｉｏｎ ｑｕａｎｔｉｔａｔｉｖｅ ｐｏｌｙｍｅｒａｓｅ ｃｈａｉｎ ｒｅａｃｔｉｏｎ， ＲＴ⁃
ｑＰＣＲ）实验、通路分析、免疫分析、蛋白互作等研究

方法探究关键生物标志物的表达、功能与机制，为
ＳＬＥ 的临床诊断与基础研究提供理论基础。

１　 材料与方法

１． １　 数据收集与处理

１． １． １　 数据获取　 从公共基因表达数据库 ＧＥＯ［７］

（ｈｔｔｐｓ： ／ ／ ｗｗｗ． ｎｃｂｉ． ｎｌｍ． ｎｉｈ． ｇｏｖ ／ ｇｅｏ ／ ）数据平台下

载 ２ 个 ＳＬＥ 相关数据集，ＧＳＥ１２１２３９ 数据集包含

２９２ 例 ＳＬＥ 患者和 ２０ 例健康个体的外周血单个核

细胞（ ｐｅｒｉｐｈｅｒａｌ ｂｌｏｏｄ ｍｏｎｏｎｕｃｌｅａｒ ｃｅｌｌ，ＰＢＭＣｓ） 样

本，ＧＳＥ１１９０７ 数据集包含 １１０ 例 ＳＬＥ 患者和 １２ 例

健康个体的 ＰＢＭＣｓ 样本。 这些数据集包括 ＳＬＥ 患

者和健康对照的基因表达信息，用于筛选潜在生物

标志物。 数据预处理 通 过 Ｒ 软 件 Ｒ 包 ｌｉｍｍａ
３. ５８. １ 完成，包括去除低表达基因、标准化处理和

批次效应校正，以确保分析结果的准确性和可靠性，
对于重复出现基因保留均值基因。
１． １． ２　 临床样本　 所有患者样本均从中国科学技

术大学附属第一医院风湿免疫科获取，共计 ２２ 例患

者；所有健康对照样本均从中国科学技术大学附属

第一医院体检中心获取，共计 １０ 例健康对照。 收集

时间为 ２０２３ 年 ９ 月—２０２４ 年 １２ 月。 本研究经中国

科学技术大学附属第一医院伦理委员会批准（审批

号：２０２３ＫＹ２８３），所有实验方案均符合《赫尔辛基宣

言》。 所有参与者在样本采集前均签署了知情同意

书。
１． １． ３　 主要试剂　 Ｂｉｏ ＲＴ 高灵敏 ｃＤＮＡ 第一链合

成试剂盒 （货号： ＢＳＢ４０Ｍ１，美国 ＢｉｏＦｌｕｘ 公司），
ＳＹＢＲ Ｇｒｅｅｎ Ｒｅａｌｔｉｍｅ ＰＣＲ Ｍａｓｔｅｒ Ｍｉｘ （ 货 号：
Ａ４００４Ｄ，北京毕特博生物技术有限公司），总 ＲＮＡ
小量抽提试剂盒（货号：ＲＫＢ２８⁃０２，广州美基生物科

技有限公司）。
１． １． ４ 　 主 要 仪 器 　 荧光定量 ＰＣＲ 仪 （型号：
Ｍｘ３０００Ｐ，美国安捷伦科技有限公司），超微量分光

光度计（型号：ＮａｎｏＤｒｏｐＴＭ Ｌｉｔｅ，美国赛默飞世尔科

技公司）。
１． １． ５ 　 ＰＢＭＣｓ 分离与 ＲＴ⁃ｑＰＣＲ 实验 　 ＰＢＭＣｓ 提

取：将外周血轻铺在淋巴细胞分离液上，３ ０００ ｒ ／ ｍｉｎ
离心 ２５ ｍｉｎ，离心后上、中层交界处，以单个核细胞

为主的白色雾环即单个核细胞。 将其吸附到离心管

中，加入磷酸盐缓冲液，混匀，１ ５００ ｒ ／ ｍｉｎ 离心 １０
ｍｉｎ，沉淀即为 ＰＢＭＣｓ。 ＲＮＡ 的提取及浓度测定：使
用 ＴＲＩｚｏｌ 试剂提取细胞中总 ＲＮＡ。 在超微量紫外

分光光度计上测得 ＲＮＡ 浓度。 选取酶标仪测定

２６０ ｎｍ 和 ２８０ ｎｍ 处的吸光度比值在 １. ８ ～ ２. ０ 符

合标准的样本。 ＰＣＲ 引物：ＨＥＲＣ５（Ｆ）：５′⁃ＧＧＣＣＴ⁃
ＴＡＴＣＣＡＴＧＴＣＴＧＧＣＡＡ⁃３′， ＨＥＲＣ５ （ Ｒ ）： ５′⁃ＡＣＣＡ⁃
ＣＡＡＧＣＧＡＣＡＡＡＴＴＣＡＡＣＴＴ⁃３′； ＧＡＰＤＨ （ Ｆ ）： ５′⁃
ＧＧＡＧＣＧＡＧＡＴＣＣＣＴＣＣＡＡＡＡＴ⁃３′，ＧＡＰＤＨ （ Ｒ）：５′⁃
ＧＧＣＴＧＴＴＧＴＣＡＴＡＣＴＴＣＴＣＡＴＧＧ⁃３′。 反应条件：在

９５ ℃下 １０ ｍｉｎ 进行预变性，再在 ９５ ℃下 １５ ｓ 和在

９５ ℃下 ４０ ｓ 的 ４０ 个循环进行变性和退火。 采用

２ － ΔΔＣＴ法分析 ＨＥＲＣ５ 的相对表达水平。
１． ２　 机器学习模型构建　 为筛选 ＳＬＥ 的潜在生物

标志物，分别使用随机森林（ ｒａｎｄｏｍ ｆｏｒｅｓｔ， ＲＦ）、极
限梯度提升算法 （ ｅｘｔｒｅｍｅ ｇｒａｄｉｅｎｔ ｂｏｏｓｔｉｎｇ， ＸＧ⁃
Ｂｏｏｓｔ）、支持向量机（ ｓｕｐｐｏｒｔ ｖｅｃｔｏｒ ｍａｃｈｉｎｅ， ＳＶＭ）
和最小绝对收缩和选择算子（ｌｅａｓｔ ａｂｓｏｌｕｔｅ ｓｈｒｉｎｋａｇｅ
ａｎｄ ｓｅｌｅｃｔｉｏｎ ｏｐｅｒａｔｏｒ， ＬＡＳＳＯ）等机器学习方法。 构

建 ＲＦ 选择特征得到与 ＳＬＥ 和对照组显著相关的基

因的重要性，提高模型的准确性［８］。 ＸＧＢｏｏｓｔ 是一

种高效、可扩展的梯度提升算法，通过迭代优化正则

化目标函数构建强预测模型，具有高精度、防过拟合

和特征重要性分析能力［９］。 ＳＶＭ 是一种线性分类

器，使用基于 ＳＶＭ 的最大间隔原理训练样本，最后

选出需要的特征数，找到最佳变量［１０］。 ＬＡＳＳＯ 回归

方法可以在拟合广义模型的同时进行变量筛选，进
行特征选择和预测特征构建［１１］。 所有模型均通过

Ｒ 语言实现，使用 ｃａｒｅｔ ６. ０. ９４ 包随机将输入数据

拆分为训练集和测试集，二分类结局指标为 ＳＬＥ 患

者和健康样本。 对训练集进行模型拟合并进行 １０
折交叉验证。 指标评价使用 ＲＯＣ，数据可视化使用

ｇｇｐｌｏｔ２ ３. ４. ４ 和机器学习 Ｒ 包自带函数。 特征基因

选取重要性得分排序前 １０，筛选结果不足 １０ 个特

征选取全部筛选结果。 上述 ４ 种方法中筛选出的特

征基因，通过韦恩图显示重叠的基因，在本研究中进

一步分析。
１． ３　 富集分析　 基因富集分析（ｇｅｎｅ ｓｅｔ ｅｎｒｉｃｈｍｅｎｔ
ａｎａｌｙｓｉｓ， ＧＳＥＡ） （ ｈｔｔｐｓ： ／ ／ ｗｗｗ． ｇｓｅａ － ｍｓｉｇｄｂ． ｏｒｇ ／
ｇｓｅａ ／ ｉｎｄｅｘ． ｊｓｐ） 根据分数对全基因组基因进行排

序。 使用 Ｒ 包 “ｃｌｕｓｔｅｒＰｒｏｆｉｌｅｒ”进行 Ｒｅａｔｏｍｅ ＧＳＥＡ
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富集分析，对表达矩阵进行差异分析，得到差异基因

和全基因组基因的富集倍数。 错误发现率 ＜ ０. ０５
被认为是一个显著的富集。 此外，采用 Ｐｅａｒｓｏｎ 相关

性分析探究最佳关键基因表达水平之间的相关性。
１． ４　 免疫细胞浸润分析（ｃｅｌｌ⁃ｔｙｐｅ ｉｄｅｎｔｉｆｉｃａｔｉｏｎ ｂｙ
ｅｓｔｉｍａｔｉｎｇ ｒｅｌａｔｉｖｅ ｓｕｂｓｅｔｓ ｏｆ ＲＮＡ ｔｒａｎｓｃｒｉｐｔｓ，
ＣＩＢＥＲＳＯＲＴ） 　 ＣＩＢＥＲＳＯＲＴ 方法可将每个样本的

基因表达数据与特定的基因集进行比较来估计每个

样本的得分。 基于 ＣＩＢＥＲＳＯＲＴ 方法估计每个样本

中 ２２ 种免疫细胞得分，根据样本得分进一步探究

ＳＬＥ 和正常样本间的免疫浸润差异。 结合上述机器

学习所得到的枢纽基因，利用基因表达和样本得分

的相关性分析探究枢纽基因与免疫细胞之间的关

联。
１． ５　 蛋白互作（ｐｒｏｔｅｉｎ⁃ｐｒｏｔｅｉｎ ｉｎｔｅｒａｃｔｉｏｎ ， ＰＰＩ）
网络构建 　 将交集靶点基因输入 ＳＴＲＩＮＧ 数据库

（ｈｔｔｐｓ： ／ ／ ｃｎ． ｓｔｒｉｎｇ － ｄｂ． ｏｒｇ ／ ），物种限定为 “Ｈｏｍｏ
ｓａｐｉｅｎｓ“，设置置信度 ＞ ０. ４，同时隐藏离散靶点，得
到 ＰＰＩ 网络。 另一种 ＰＰＩ 网络构建方式使用 Ｇｅｎｅ⁃
ＭＡＮＩＡ 平台 （ ｈｔｔｐｓ： ／ ／ ｇｅｎｅｍａｎｉａ． ｏｒｇ ／ ），打开网址

ｈｔｔｐｓ： ／ ／ ｇｅｎｅｍａｎｉａ． ｏｒｇ ／ ，输入 ｇｅｎｅ ｌｉｓｔ 点进 ｓｅａｒｃｈ
构建调控网络，点击圆圈选项更改网络形式，最后下

载结果。
１． ６ 　 蛋白结构预测与可视化 　 利用 ＡｌｐｈａＦｏｌｄ３
（ＡＦ３）对 ＨＥＲＣ５ 与其候选互作蛋白（ ＩＳＧ１５、ＩＲＦ３、
ＵＢＥ２Ｌ６ 和 ＩＦＩＴ１）进行复合物结构预测。 将蛋白序

列（来源于 ＵｎｉＰｒｏｔ 数据库）输入 ＡＦ３ 模型，并采用

默认参数设置。 预测结果包括单个残基的可信度评

分、蛋白 －蛋白结合的可信度评分和整体复合体的

评分。 根据界面预测 ＴＭ 分数（ ｉｎｔｅｒ － ｃｈａｉｎ ｐｒｅｄｉｃ⁃
ｔｅｄ ＴＭ ｓｃｏｒｅ，ｉｐＴＭ）来评估不同链残基之间的相互

作用，用来衡量两个蛋白间界面相互作用准确度，数
值越高蛋白结合的稳定性越高，并结合结构可视化

工具分析关键结合区域。 蛋白结构预测结果通过

ＰｙＭＯＬ 软件进行可视化，以直观展示蛋白互作的关

键区域和可能的结合模式。
１． ７　 统计学处理　 对于两组之间的连续变量比较，
如果它们符合正态分布，则应用 ｔ 检验，非正态分布

采用 Ｍａｎｎ⁃Ｗｈｉｔｎｅｙ Ｕ 检验。 方差分析适用于 ３ 组

之间的连续变量。 Ｐｅａｒｓｏｎ 的分析用于明确基因表

达与免疫细胞分数之间的相关性。 ＲＯＣ 曲线分析

用于确定研究中确定的诊断指标的诊断性能。 所有

统计分析均使用 Ｒ 语言（４. ３. １ 版）进行。 所有统

计分析均为双侧分析，Ｐ ＜ ０. ０５ 为差异有统计学意

义。 实验结果的统计分析通过 Ｒ 语言 ｇｇｐｌｏｔ２ 包

（３. ５. １ 版）和 ＧｒａｐｈＰａｄ Ｐｒｉｓｍ（１０. １. ２ 版）进行数据

可视化。

２　 结果

２． １　 基于机器学习鉴定 ＳＬＥ 生物标志物 　 ＲＦ 分

析：在 ＧＳＥ１２１２３９ 和 ＧＳＥ１１９０７ 数据集中分别使用

ＲＦ 算 法 计 算 基 因 的 重 要 性 分 值， 并 筛 选 出

（ＧＳＥ１２１２３９ 筛选 １１５ 个；ＧＳＥ１１９０７ 筛选 ４１ 个）
ｃｏｎｆｉｒｍｅｄ 基因作为 ＳＬＥ 潜在生物标志物，模型 ＡＵＣ
均为 １. ０００；ＸＧＢｏｏｓｔ 分析：通过 ＸＧＢｏｏｓｔ 算法对 ２
个数据集的基因表达数据进行训练与测试，筛选出

具有高贡献度的前 １５ 的枢纽基因，模型 ＡＵＣ 均为

１. ０００；ＳＶＭ 分析：在 ＳＶＭ 分析中，基于基因表达数

据训练分类模型，分别对 ２ 个数据集的重要基因进

行评分，模型 ＡＵＣ 均为 １. ０００；ＬＡＳＳＯ 分析：利用

ＬＡＳＳＯ 回归模型对 ２ 个数据集分别进行特征选择，
筛选出与 ＳＬＥ 显著相关的关键基因，ＧＳＥ１２１２３９ 和

ＧＳＥ１１９０７ 的 ＡＵＣ 分别为 １. ０００ 和 ０. ９９０。 见图 １、
２。
　 　 基因交集筛选：结合 ＲＦ、ＸＧＢｏｏｓｔ、ＳＶＭ 和 ＬＡＳ⁃
ＳＯ ４ 种算法的筛选结果，ＧＳＥ１２１２３９ 筛选得到 ２３１
个 ＳＬＥ 潜在生物标志物，ＧＳＥ１１９０７ 共鉴定 １５９ 个潜

在标志物。 进一步对 ２ 个数据集潜在标志物取交

集，最终鉴出唯一的交集基因 ＨＥＲＣ５ 作为潜在的

ＳＬＥ 生物标志物（图 ３）。
２． ２　 ＨＥＲＣ５在 ＳＬＥ 患者中表达情况 　 基 于

ＧＳＥ１２１２３９ 和 ＧＳＥ１１９０７ 数据分析表明，相比于正

常样本，ＨＥＲＣ５ 在 ＳＬＥ 中显著高表达（图 ４Ａ、４Ｂ）。
再收集 ＳＬＥ 患者和健康对照外周血 ＰＢＭＣｓ，针对筛

选出来的差异基因 ＨＥＲＣ５ 采用 ＲＴ⁃ｑＰＣＲ 实验进行

验证，结果显示，与健康对照组相比，ＨＥＲＣ５ 在 ＳＬＥ
患者中显著增高（图 ４Ｃ）。
２． ３　 ＨＥＲＣ５ 与 ＳＬＥ 中浸润免疫细胞的相关性 　
为进一步探究枢纽基因和免疫细胞的关系，随后对

ＨＥＲＣ５ 与免疫细胞浸润进行分析。 结果显示

ＨＥＲＣ５ 与 ＳＬＥ 患者中特定的免疫细胞类型之间存

在相关性。 ＨＥＲＣ５ 与中性粒细胞 （ ｒ ＝ ０. ３９，Ｐ ＜
０. ０５），记忆 Ｂ 细胞（ ｒ ＝ ０. ３３，Ｐ ＜ ０. ０５），激活的树

突状细胞（ ｒ ＝ ０. ５２，Ｐ ＜ ０. ０５）等细胞的浸润呈显著

正相关，而与静息的 ＮＫ 细胞 （ ｒ ＝ － ０. ２０， Ｐ ＜
０. ０５），ＣＤ８ Ｔ 细胞（ ｒ ＝ － ０. ２５，Ｐ ＜ ０. ０５）和初始 Ｂ
细胞（ ｒ ＝ － ０. ２９，Ｐ ＜ ０. ０５）等细胞的浸润呈显著负

相关（图 ５）。这表明 ＨＥＲＣ５ 与免疫细胞浸润的关
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图 １　 ４ 种机器学习算法的验证集 ＡＵＣ
Ｆｉｇ． １　 Ｖａｌｉｄａｔｉｏｎ ｓｅｔ ＡＵＣ ｏｆ ｆｏｕｒ ｍａｃｈｉｎｅ ｌｅａｒｎｉｎｇ ａｌｇｏｒｉｔｈｍｓ

　 　 Ａ： Ｖａｌｉｄａｔｉｏｎ ｓｅｔ ＡＵＣ ｏｆ ＲＦ， ＬＡＳＳＯ， ＳＶＭ ａｎｄ ＸＧＢｏｏｓｔ （ ＧＳＥ１２１２３９ ）； Ｂ： Ｖａｌｉｄａｔｉｏｎ ｓｅｔ ＡＵＣ ｏｆ ＲＦ， ＬＡＳＳＯ， ＳＶＭ ａｎｄ ＸＧＢｏｏｓｔ
（ＧＳＥ１１９０７）．

系具有显著相关性。
２． ４ 　 ＨＥＲＣ５ 通路分析 　 为了研究生物标志物

ＨＥＲＣ５ 在 ＳＬＥ 中的作用机制，通过 ＧＳＥＡ 的结果发

现干扰素信号通路在 ＳＬＥ 患者中呈现激活趋势（干
扰素信号通路归一化富集分数：２. ３５９ ８３３， Ｐ ＜
０. ００１；干扰素 Ｂｅｔａ 信号通路归一化富集分数：
２. ８０８ １５９，Ｐ ＜ ０. ００１），提示 ＨＥＲＣ５ 可能通过调控

干扰素信号通路的激活促进 ＳＬＥ 的发生发展（图
６）。
２． ５　 ＨＥＲＣ５ 与蛋白质互作网络 　 基于 ＧｅｎｅＭＡ⁃
ＮＩＡ 平台，构建 ＰＰＩ 网络。 利用 ｃｙｔｏＨｕｂｂａ 插件进行

分析，ＨＥＲＣ５ 与多种免疫和炎症相关蛋白（ＤＤＸ５８、
ＰＰＭ１Ｂ、ＦＬＮＢ、ＵＢＡ７、 ＩＲＦ３、 ＩＦＩＴ１、 ＩＳＧ１５、 ＥＩＦ４Ｇ３、
ＥＩＦ４Ｇ２、ＥＩＦ４Ｅ３、ＥＩＦ４Ｅ２、ＨＡＳＰＩＮ、ＵＢＥ２Ｌ６、ＳＩＲＴ７、
ＨＥＲＣ６、 ＴＴＫ、 ＵＢＥ２Ｎ、 ＭＡＰ３Ｋ１４、 ＮＯＰ１６ 和

ＡＣ０９８５８２. １）存在相互作用（图 ７Ａ）。 基于 ＳＴＲＩＮＧ
平台的 ＰＰＩ 网络构建显示，ＨＥＲＣ５ 分别于 ＩＦＩＴ２、
ＤＤＸ５８、ＵＳＰ１８、ＩＳＧ１５、ＵＢＡ７、ＵＢＥ２Ｌ６、ＭＸ１、ＩＦＩＴ１、
ＯＡＳＬ 和 ＩＦＩＴ３ 存在相互作用 （图 ７Ｂ）。 随后将

ＳＴＲＩＮＧ 和 ＧｅｎｅＭＡＮＩＡ 取交集靶点基因， 发 现

ＨＥＲＣ５ 与 ＩＳＧ１５、ＩＲＦ３、ＵＢＥ２Ｌ６ 和 ＩＦＩＴ１ 有相互作

用关系（图 ７Ｃ、７Ｄ）。
２． ６　 ＨＥＲＣ５ 与关键蛋白的结构预测 　 利用 ＡＦ３
对 ＨＥＲＣ５ 与 ＩＳＧ１５、ＩＲＦ３、ＵＢＥ２Ｌ６ 和 ＩＦＩＴ１ 的蛋白

复合物结构进行预测。 预测结果显示，ＨＥＲＣ５ 与

ＵＢＥ２Ｌ６ 的 ｉｐＴＭ 值为 ０. ８３，表明其结合稳定性和可

信度较高，提示 ＨＥＲＣ５ 可能通过参与泛素化途径

发挥重要作用；ＨＥＲＣ５ 与 ＩＳＧ１５ 的 ｉｐＴＭ 值为 ０. ５５，
结合区域的 ｐＬＤＤＴ 值较高，表明该相互作用可能涉

及干扰素信号通路的调控。 相较之下，ＨＥＲＣ５ 与

ＩＲＦ３ 和 ＩＦＩＴ１ 的 ｉｐＴＭ 值分别为 ０. ２９ 和 ０. ２１，可信

度较低，可能的结合模式尚不明确。 上述预测结果

通过 ＰｙＭＯＬ 可视化进一步验证了关键结合区域的

可靠性（图 ８）。 提示 ＨＥＲＣ５ 可能与上述蛋白互作

发挥潜在功能。

３　 讨论

　 　 ＳＬＥ 是一种发病机制复杂、临床异质性大的自

身免疫性疾病，其特征是机体产生攻击自身组织和

器官的抗体，导致全身多个器官的炎症反应和组织

损伤，其病因目前尚不完全清楚。 随着基因芯片技

术和高通量技术的发展，利用生物信息学方法挖掘

基因芯片数据可以快速有效地筛选差异基因。 近年

来，它被广泛应用于 ＳＬＥ 等自身免疫性疾病的致病

机制研究，为深入解析其分子病理学基础提供了新

的研究思路。
　 　 本研究通过对 ＧＳＥ１２１２３９ 和 ＧＳＥ１１９０７ 这 ２ 个

基因数据集的生物信息学分析，筛选出 １ 个共同差

异表达基因 ＨＥＲＣ５。 ＨＥＲＣ５ 由 ６ 个 ＨＥＲＣ 蛋白组

成的家族，包含１个氨基末端的ＲＣＣ１样结构域、１
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图 ２　 ４ 种机器学习算法鉴定 ＳＬＥ 生物标志物

Ｆｉｇ． ２　 Ｆｏｕｒ Ｍａｃｈｉｎｅ Ｌｅａｒｎｉｎｇ Ａｌｇｏｒｉｔｈｍｓ Ｉｄｅｎｔｉｆｙ ＳＬＥ Ｂｉｏｍａｒｋｅｒｓ
　 　 Ａ： Ｒｅｓｕｌｔｓ ｏｆ ｇｅｎｅｔｉｃ ｉｍｐｏｒｔａｎｃｅ ａｎａｌｙｓｉｓ ｏｆ ＲＦ ａｌｇｏｒｉｔｈｍ； Ｂ： Ｒａｎｋｉｎｇ ｏｆ ｇｅｎｅ ｉｍｐｏｒｔａｎｃｅ ｓｃｏｒｅｓ ｆｏｒ ｔｈｅ ＸＧＢｏｏｓｔ ａｌｇｏｒｉｔｈｍ； Ｃ： Ｒｅｓｕｌｔｓ ｏｆ ＳＶＭ ｇｅ⁃
ｎｅｔｉｃ ｓｃｒｅｅｎｉｎｇ； Ｄ： Ｒｅｓｕｌｔｓ ｏｆ ＬＡＳＳＯ ａｌｇｏｒｉｔｈｍ ｇｅｎｅ ｓｃｒｅｅｎｉｎｇ．

个与任何已知蛋白都不具有同源性的间隔区以及 １
个羧基末端的 ＨＥＣＴ 结构域。 ＨＥＲＣ５ 蛋白被鉴定

为一种抗病毒蛋白，可抑制多种病毒的复制［１２ － １３］。
ＧＳＥＡ 结果显示，ＨＥＲＣ５ 参与干扰素信号通路。 Ⅰ
型干扰素在先天抗病毒和适应性免疫反应中发挥着

重要作用，在微生物感染时迅速发生。 ＨＥＲＣ５ 的表

达在体外病毒感染时上调［１４］。 感染作为 ＳＬＥ 常见

的危险因素，在 ＳＬＥ 的发生发展过程中发挥着重要

的作用。 ＨＥＲＣ５ 在许多细胞类型和组织中普遍表

达，包括但不限于效应 Ｔ 细胞、中枢记忆 Ｔ 细胞、树
突状细胞、ＣＤ１４ ＋ 单核细胞、单核细胞衍生的巨噬细

胞、胚胎干细胞、多能干细胞、造血干细胞［１５ － １７］。 在

本研究中发现，ＨＥＲＣ５ 与 ＳＬＥ 中激活的树突状细

胞，记忆 Ｂ 细胞，浆细胞和中性粒细胞的免疫浸润

呈正相关，而与静息的 ＮＫ 细胞，γ⁃δ 型 Ｔ 细胞和初

始 Ｂ 细胞的免疫浸润呈负相关。 Ｃｏｉｔ ｅｔ ａｌ［１８］ 发现，
在肾脏受累的 ＳＬＥ 患者中，ＨＥＲＣ５ 存在低甲基化现

象 。本研究 ＲＴ⁃ｑＰＣＲ实验也同样发现ＨＥＲＣ５ 在
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图 ３　 ＧＳＥ１２１２３９ 和 ＧＳＥ１１９０７ 数据集交集基因

Ｆｉｇ． ３　 Ｉｎｔｅｒｓｅｃｔｉｏｎ ｇｅｎｅｓ ｏｆ ＧＳＥ１２１２３９ ａｎｄ ＧＳＥ１１９０７ ｄａｔａｓｅｔｓ

图 ４　 ＨＥＲＣ５ 在 ＳＬＥ 中表达情况

Ｆｉｇ． ４　 Ｅｘｐｒｅｓｓｉｏｎ ｏｆ ＨＥＲＣ５ ｉｎ ＳＬＥ
　 　 Ａ， Ｂ： ＨＥＲＣ５ ｉｓ ｈｉｇｈｌｙ ｅｘｐｒｅｓｓｅｄ ｉｎ ＳＬＥ （ＧＳＥ１２１２３９ ａｎｄ ＧＳＥ１１９０７）； Ｃ： ｍＲＮＡ ｅｘｐｒｅｓｓｉｏｎ ｏｆ ＨＥＲＣ５ ｉｎ ＰＢＭＣｓ； ＃＃Ｐ ＜ ０. ０１ ｖｓ Ｈｅａｌｔｈ ｃｏｎｔｒｏｌ
ｇｒｏｕｐ．

ＳＬＥ 患者中高表达。
　 　 在 ＳＴＲＩＮＧ 平台和 ＧｅｎｅＭＡＮＩＡ 平台构建 ＰＰＩ
网络，用 ｃｙｔｏＨｕｂｂａ 插件进行分析，得到共同靶点基

因 ５ 个。 在上述筛选出的关键基因中，ＩＦＩＴ１ 属于

ＩＦＩＴ 家族，是受干扰素诱导产生的一类干扰素诱导

基因，在抗病毒和免疫调节中起着重要作用。 干扰

素最早诱导的 ＩＳＧ 之一是 ＩＳＧ１５。 由 ＩＳＧ１５ 基因合

成的游离 ＩＳＧ１５ 蛋白会在翻译后与细胞蛋白结合，
也会被细胞分泌到细胞外环境中。 ＩＳＧ１５ 蛋白在生

理条件下的表达量极低。 然而，在多种人类疾病中，
包括癌症、神经退行性疾病和炎症性疾病，ＩＳＧ１５ 依

赖干扰素的表达会异常升高或受损。人类 ＩＳＧ１５ 的

·３７３２·安徽医科大学学报　 Ａｃｔａ Ｕｎｉｖｅｒｓｉｔａｔｉｓ Ｍｅｄｉｃｉｎａｌｉｓ Ａｎｈｕｉ　 ２０２５ Ｄｅｃ；６０（１２）



图 ５　 ＨＥＲＣ５ 与免疫细胞相关性

Ｆｉｇ． ５　 Ｔｈｅ ｃｏｒｒｅｌａｔｉｏｎ ｂｅｔｗｅｅｎ ＨＥＲＣ５ ａｎｄ ｉｍｍｕｎｅ ｃｅｌｌ

图 ６　 ＨＥＲＣ５ 与干扰素信号通路相关性分析

Ｆｉｇ． ６　 Ｃｏｒｒｅｌａｔｉｏｎ ａｎａｌｙｓｉｓ ｏｆ ＨＥＲＣ５ ａｎｄ ｉｎｔｅｒｆｅｒｏｎ ｓｉｇｎａｌｉｎｇ ｐａｔｈｗａｙ

主要连接酶是 ＨＥＲＣ５，可广泛地对蛋白质进行共翻

译 ＩＳＧｙｌａｔｅｓ，ＩＳＧ１５ 在人类疾病的病因和发病机制

中具有抑制或刺激作用。 Ⅰ型干扰素通路被激活后

增加了 ＵＢＥ２Ｌ６ 的表达，ＵＢＥ２Ｌ６ 是一种催化泛素

化与其他蛋白质链接的桥梁，是调节蛋白质稳定和

功能的重要蛋白。 研究［１９］ 发现，ＵＢＥ２Ｌ６ 能抑制受

结核分枝杆菌感染的巨噬细胞凋亡，ｍｉＲ⁃１４６ａ⁃５ｐ 可

能是 ＵＢＥ２Ｌ６ 的靶标。 ＵＢＥ２Ｌ６ 在全反式维甲酸诱

导的急性早幼粒白血病细胞的细胞分化中具有功能

性作用，并可能是由其在 ＩＳＧｙｌａｔｉｏｎ 中的催化作用

介导的［２０］。 ＩＲＦ３ 是 Ｉ 型干扰素产生的主转录因子，
ＩＲＦ３ 的转录活性和其他生物功能通过其磷酸化受

到精确调控［２１ － ２２］。 磷酸化的 ＩＲＦ３ 会发生构象变

化，随后进入细胞核，与靶基因的启动子结合，从而

增强干扰素和干扰素刺激基因的产生［２３］。 ＩＲＦ３ 与

ＩＲＦ７ 共享 ＮＦ⁃κＢ 结合基团，可以抑制病毒感染细胞

中的炎症基因表达［２４］。 并且，研究［２５］ 发现 ＩＲＦ３ 是

ＨＥＲＣ５ 的底物，ＨＥＲＣ５ 可催化 ＩＲＦ３ 的 ＩＳＧｙｌａｔｉｏｎ，
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图 ７　 ＨＥＲＣ５ 的 ＰＰＩ网络图

Ｆｉｇ． ７　 ＰＰＩ ｎｅｔｗｏｒｋ ｄｉａｇｒａｍ ｏｆ ＨＥＲＣ５
　 　 Ａ： Ｃｏｒｅ ｇｅｎｅｓ ｄｅｒｉｖｅｄ ｆｒｏｍ ｔｈｅ ＧｅｎｅＭＡＮＩＡ ｐｌａｔｆｏｒｍ； Ｂ： Ｃｏｒｅ ｇｅｎｅｓ ｄｅｒｉｖｅｄ ｆｒｏｍ ｔｈｅ ＳＴＲＩＮＧ ｐｌａｔｆｏｒｍ； Ｃ： ＧｅｎｅＭＡＮＩＡ ａｎｄ ＳＴＲＩＮＧ ｉｎｔｅｒｓｅｃｔｉｏｎ
ｔａｒｇｅｔ Ｖｅｎｎ ｄｉａｇｒａｍｓ； Ｄ： Ｃｏｒｅ ｔａｒｇｅｔ ｇｅｎｅｓ ａｓｓｏｃｉａｔｅｄ ｗｉｔｈ ＨＥＲＣ５．

图 ８　 ＨＥＲＣ５ 与关键蛋白的可视化

Ｆｉｇ． ８　 Ｖｉｓｕａｌｉｚａｔｉｏｎ ｏｆ ＨＥＲＣ５ ｗｉｔｈ ｋｅｙ ｐｒｏｔｅｉｎｓ
　 　 Ａ： Ｖｉｓｕａｌｉｚａｔｉｏｎ ｏｆ ＨＥＲＣ５ ｗｉｔｈ ＵＢＥ２Ｌ６； Ｂ： Ｖｉｓｕａｌｉｚａｔｉｏｎ ｏｆ ＨＥＲＣ５ ｗｉｔｈ ＩＳＧ１５； Ｃ： Ｖｉｓｕａｌｉｚａｔｉｏｎ ｏｆ ＨＥＲＣ５ ｗｉｔｈ ＩＲＦ３； Ｄ： Ｖｉｓｕａｌｉｚａｔｉｏｎ ｏｆ
ＨＥＲＣ５ ｗｉｔｈ ＩＦＩＴ１．

这种修饰抑制了 ＩＲＦ３ 的泛素化和降解，从而增强了

先天免疫力。 本研究利用 ＡＦ３ 对 ＨＥＲＣ５ 与 ＩＳＧ１５、
ＩＲＦ３、ＵＢＥ２Ｌ６ 及 ＩＦＩＴ１ 的蛋白复合物结构进行预

测。 结果显示，ＨＥＲＣ５ 与 ＵＢＥ２Ｌ６ 的相互作用具有

较高可信度，提示其可能参与泛素化调控；与 ＩＳＧ１５
的中等结合稳定性提示其可能调控 ＩＳＧｙｌａｔｉｏｎ 修饰

和影响干扰素通路的激活。 相比之下，ＨＥＲＣ５ 与

ＩＲＦ３ 和 ＩＦＩＴ１ 的互作预测可信度较低，反映这些相
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互作用在生理条件下较弱或需要辅助因子的参与。
尽管如此，考虑到 ＩＲＦ３ 是 Ｉ 型干扰素通路的主转录

因子，而 ＩＦＩＴ１ 是典型的干扰素刺激基因，未来研究

可通过实验进一步验证 ＨＥＲＣ５ 是否在特定条件下

（如病毒感染或炎症刺激）与这些蛋白发生动态结

合。
　 　 本研究通过生物信息学分析发现 ＨＥＲＣ５ 与干

扰素通路相关，并证实其在 ＳＬＥ 患者中高表达，但
该研究尚存在一定局限性：该研究尚未直接证实

ＨＥＲＣ５ 对干扰素通路的调控作用。 其次，临床样本

数量需要进一步扩大，以深入探究 ＨＥＲＣ５ 在 ＳＬＥ
病程中的作用，同时，通过基因干扰、过表达等多种

手段，系统评估 ＨＥＲＣ５ 是否经由 ＩＳＧｙｌａｔｉｏｎ 或泛素

化途径调节干扰素信号通路。
　 　 综上所述，本研究基于通过 ＲＦ、ＸＧＢｏｏｓｔ、ＳＶＭ
和 ＬＡＳＳＯ ４ 种机器学习算法，筛选出可用于 ＳＬＥ 诊

断的特征基因标志物 ＨＥＲＣ５，其可能通过干扰素通

路促进 ＳＬＥ 进展，并通过 ＲＴ⁃ｑＰＣＲ 实验初步验证其

参与 ＳＬＥ 的疾病进程，为 ＳＬＥ 的早期诊断提供了有

价值的研究依据。 未来，对 ＨＥＲＣ５ 的相关机制还

需进一步深入研究，以确定其在 ＳＬＥ 中的具体作

用。
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ｔｈｅ ｐｒｅｄｉｃｔｉｏｎ ｏｆ ｂｒｅａｓｔ ｃａｎｃｅｒ ｒｅｃｕｒｒｅｎｃｅ ｒｉｓｋ［Ｊ］ ． ＢＭＣ Ｍｅｄ Ｉｎ⁃
ｆｏｒｍ Ｄｅｃｉｓ Ｍａｋ， ２０２３， ２３（１）： ２７６． ｄｏｉ：１０． １１８６ ／ ｓ１２９１１ － ０２３
－ ０２３７７ － ｚ．

［１０］ Ｚｈｕ Ｙ Ｘ， Ｈｕａｎｇ Ｊ Ｑ， Ｍｉｎｇ Ｙ Ｙ， ｅｔ ａｌ． Ｓｃｒｅｅｎｉｎｇ ｏｆ ｋｅｙ ｂｉｏｍａｒ⁃
ｋｅｒｓ ｏｆ ｔｅｎｄｉｎｏｐａｔｈｙ ｂａｓｅｄ ｏｎ ｂｉｏｉｎｆｏｒｍａｔｉｃｓ ａｎｄ ｍａｃｈｉｎｅ ｌｅａｒｎｉｎｇ
ａｌｇｏｒｉｔｈｍｓ［Ｊ］ ． ＰＬｏＳ Ｏｎｅ， ２０２１， １６（１０）： ｅ０２５９４７５． ｄｏｉ：１０．
１３７１ ／ ｊｏｕｒｎａｌ． ｐｏｎｅ． ０２５９４７５．

［１１］ Ｋａｎｇ Ｊ， Ｃｈｏｉ Ｙ Ｊ， Ｋｉｍ Ｉ Ｋ， ｅｔ ａｌ． ＬＡＳＳＯ⁃ｂａｓｅｄ ｍａｃｈｉｎｅ ｌｅａｒｎ⁃
ｉｎｇ ａｌｇｏｒｉｔｈｍ ｆｏｒ ｐｒｅｄｉｃｔｉｏｎ ｏｆ ｌｙｍｐｈ ｎｏｄｅ ｍｅｔａｓｔａｓｉｓ ｉｎ Ｔ１ ｃｏｌｏｒｅｃ⁃
ｔａｌ ｃａｎｃｅｒ［Ｊ］ ． Ｃａｎｃｅｒ Ｒｅｓ Ｔｒｅａｔ， ２０２１， ５３（３）： ７７３ － ８３． ｄｏｉ：
１０． ４１４３ ／ ｃｒｔ． ２０２０． ９７４．

［１２］ Ｗｏｏｄｓ Ｍ Ｗ， Ｋｅｌｌｙ Ｊ Ｎ， Ｈａｔｔｌｍａｎｎ Ｃ Ｊ， ｅｔ ａｌ． Ｈｕｍａｎ ＨＥＲＣ５
ｒｅｓｔｒｉｃｔｓ ａｎ ｅａｒｌｙ ｓｔａｇｅ ｏｆ ＨＩＶ⁃１ ａｓｓｅｍｂｌｙ ｂｙ ａ ｍｅｃｈａｎｉｓｍ ｃｏｒｒｅｌａ⁃
ｔｉｎｇ ｗｉｔｈ ｔｈｅ ＩＳＧｙｌａｔｉｏｎ ｏｆ Ｇａｇ［Ｊ］ ． Ｒｅｔｒｏｖｉｒｏｌｏｇｙ， ２０１１， ８： ９５．
ｄｏｉ：１０． １１８６ ／ １７４２ － ４６９０ － ８ － ９５．

［１３］ Ｍａｔｈｉｅｕ Ｎ Ａ， Ｐａｐａｒｉｓｔｏ Ｅ， Ｂａｒｒ Ｓ Ｄ， ｅｔ ａｌ． ＨＥＲＣ５ ａｎｄ ｔｈｅ ＩＳ⁃
Ｇｙｌａｔｉｏｎ ｐａｔｈｗａｙ： ｃｒｉｔｉｃａｌ ｍｏｄｕｌａｔｏｒｓ ｏｆ ｔｈｅ ａｎｔｉｖｉｒａｌ ｉｍｍｕｎｅ ｒｅ⁃
ｓｐｏｎｓｅ ［ Ｊ ］ ． Ｖｉｒｕｓｅｓ， ２０２１， １３ （ ６ ）： １１０２． ｄｏｉ： １０． ３３９０ ／
ｖ１３０６１１０２．

［１４］ Ｖａｌｅｒｏ Ｙ， Ｃｈａｖｅｓ⁃Ｐｏｚｏ Ｅ， Ｃｕｅｓｔａ Ａ． Ｆｉｓｈ ＨＥＲＣ７： ｐｈｙｌｏｇｅｎｙ，
ｃｈａｒａｃｔｅｒｉｚａｔｉｏｎ， ａｎｄ ｐｏｔｅｎｔｉａｌ ｉｍｐｌｉｃａｔｉｏｎｓ ｆｏｒ ａｎｔｉｖｉｒａｌ ｉｍｍｕｎｉｔｙ
ｉｎ Ｅｕｒｏｐｅａｎ Ｓｅａ ｂａｓｓ［Ｊ］ ． Ｉｎｔ Ｊ Ｍｏｌ Ｓｃｉ， ２０２４， ２５（１４）： ７７５１．
ｄｏｉ：１０． ３３９０ ／ ｉｊｍｓ２５１４７７５１．

［１５］ Ｇｕｅｎｔｈｅｒ Ｍ Ｇ， Ｆｒａｍｐｔｏｎ Ｇ Ｍ， Ｓｏｌｄｎｅｒ Ｆ， ｅｔ ａｌ． Ｃｈｒｏｍａｔｉｎ ｓｔｒｕｃ⁃
ｔｕｒｅ ａｎｄ ｇｅｎｅ ｅｘｐｒｅｓｓｉｏｎ ｐｒｏｇｒａｍｓ ｏｆ ｈｕｍａｎ ｅｍｂｒｙｏｎｉｃ ａｎｄ ｉｎ⁃
ｄｕｃｅｄ ｐｌｕｒｉｐｏｔｅｎｔ ｓｔｅｍ ｃｅｌｌｓ［ Ｊ］ ． Ｃｅｌｌ Ｓｔｅｍ Ｃｅｌｌ， ２０１０， ７ （２）：
２４９ － ５７． ｄｏｉ：１０． １０１６ ／ ｊ． ｓｔｅｍ． ２０１０． ０６． ０１５．

［１６］ Ｒｏｔｈ Ｒ Ｂ， Ｈｅｖｅｚｉ Ｐ， Ｌｅｅ Ｊ， ｅｔ ａｌ． Ｇｅｎｅ ｅｘｐｒｅｓｓｉｏｎ ａｎａｌｙｓｅｓ ｒｅ⁃
ｖｅａｌ ｍｏｌｅｃｕｌａｒ ｒｅｌａｔｉｏｎｓｈｉｐｓ ａｍｏｎｇ ２０ ｒｅｇｉｏｎｓ ｏｆ ｔｈｅ ｈｕｍａｎ ＣＮＳ
［Ｊ］ ． Ｎｅｕｒｏｇｅｎｅｔｉｃｓ， ２００６， ７ （ ２ ）： ６７ － ８０． ｄｏｉ： １０． １００７ ／
ｓ１００４８ － ００６ － ００３２ － ６．

［１７］ Ｌａｗｒｅｎｃｅ Ｂ Ｐ， Ｄｅｎｉｓｏｎ Ｍ Ｓ， Ｎｏｖａｋ Ｈ， ｅｔ ａｌ． Ａｃｔｉｖａｔｉｏｎ ｏｆ ｔｈｅ
ａｒｙｌ ｈｙｄｒｏｃａｒｂｏｎ ｒｅｃｅｐｔｏｒ ｉｓ ｅｓｓｅｎｔｉａｌ ｆｏｒ ｍｅｄｉａｔｉｎｇ ｔｈｅ ａｎｔｉ⁃ｉｎｆｌａｍ⁃
ｍａｔｏｒｙ ｅｆｆｅｃｔｓ ｏｆ ａ ｎｏｖｅｌ ｌｏｗ⁃ｍｏｌｅｃｕｌａｒ⁃ｗｅｉｇｈｔ ｃｏｍｐｏｕｎｄ ［ Ｊ］ ．
Ｂｌｏｏｄ， ２００８， １１２（４）： １１５８ － ６５． ｄｏｉ：１０． １１８２ ／ ｂｌｏｏｄ － ２００７ －
０８ － １０９６４５．

［１８］ Ｃｏｉｔ Ｐ， Ｒｅｎａｕｅｒ Ｐ， Ｊｅｆｆｒｉｅｓ Ｍ Ａ， ｅｔ ａｌ． Ｒｅｎａｌ ｉｎｖｏｌｖｅｍｅｎｔ ｉｎ ｌｕ⁃
ｐｕｓ ｉｓ ｃｈａｒａｃｔｅｒｉｚｅｄ ｂｙ ｕｎｉｑｕｅ ＤＮＡ ｍｅｔｈｙｌａｔｉｏｎ ｃｈａｎｇｅｓ ｉｎ ｎａｉｖｅ
ＣＤ４ ＋ Ｔ ｃｅｌｌｓ［ Ｊ］ ． Ｊ Ａｕｔｏｉｍｍｕｎ， ２０１５， ６１： ２９ － ３５． ｄｏｉ：１０．
１０１６ ／ ｊ． ｊａｕｔ． ２０１５． ０５． ００３．

［１９］ Ｇａｏ Ｊ， Ｌｉ Ｃ， Ｌｉ Ｗ， ｅｔ ａｌ． Ｉｎｃｒｅａｓｅｄ ＵＢＥ２Ｌ６ ｒｅｇｕｌａｔｅｄ ｂｙ ｔｙｐｅ １
ｉｎｔｅｒｆｅｒｏｎ ａｓ ｐｏｔｅｎｔｉａｌ ｍａｒｋｅｒ ｉｎ ＴＢ［ Ｊ］ ． Ｊ Ｃｅｌｌ Ｍｏｌ Ｍｅｄ， ２０２１，
２５（２４）： １１２３２ － ４３． ｄｏｉ：１０． １１１１ ／ ｊｃｍｍ． １７０４６．

［２０］ Ｏｒｆａｌｉ Ｎ， Ｓｈａｎ⁃Ｋｒａｕｅｒ Ｄ， Ｏ′Ｄｏｎｏｖａｎ Ｔ Ｒ， ｅｔ ａｌ． Ｉｎｈｉｂｉｔｉｏｎ ｏｆ
ＵＢＥ２Ｌ６ ａｔｔｅｎｕａｔｅｓ ＩＳＧｙｌａｔｉｏｎ ａｎｄ ｉｍｐｅｄｅｓ ＡＴＲＡ⁃ｉｎｄｕｃｅｄ ｄｉｆｆｅｒ⁃
ｅｎｔｉａｔｉｏｎ ｏｆ ｌｅｕｋｅｍｉｃ ｃｅｌｌｓ［ Ｊ］ ． Ｍｏｌ Ｏｎｃｏｌ， ２０２０， １４（６）： １２９７

·６７３２· 安徽医科大学学报　 Ａｃｔａ Ｕｎｉｖｅｒｓｉｔａｔｉｓ Ｍｅｄｉｃｉｎａｌｉｓ Ａｎｈｕｉ　 ２０２５ Ｄｅｃ；６０（１２）



－ ３０９． ｄｏｉ：１０． １００２ ／ １８７８ － ０２６１． １２６１４．
［２１］ Ｚｈｕ Ｈ， Ｈｏｕ Ｐ， Ｃｈｕ Ｆ， ｅｔ ａｌ． ＰＢＬＤ ｐｒｏｍｏｔｅｓ ＩＲＦ３ ｍｅｄｉａｔｅｄ ｔｈｅ

ｔｙｐｅ Ｉ ｉｎｔｅｒｆｅｒｏｎ （ ＩＦＮ⁃Ｉ） ｒｅｓｐｏｎｓｅ ａｎｄ ａｐｏｐｔｏｓｉｓ ｔｏ ｉｎｈｉｂｉｔ ｖｉｒａｌ
ｒｅｐｌｉｃａｔｉｏｎ［Ｊ］ ． Ｃｅｌｌ Ｄｅａｔｈ Ｄｉｓ， ２０２４， １５ （１０）： ７２７． ｄｏｉ：１０．
１０３８ ／ ｓ４１４１９ － ０２４ － ０７０８３ － ｗ．

［２２］ Ｗａｎｇ Ｊ， Ｚｈｅｎｇ Ｈ， Ｄｏｎｇ Ｃ， ｅｔ ａｌ． Ｈｕｍａｎ ＯＴＵＤ６Ｂ ｐｏｓｉｔｉｖｅｌｙ
ｒｅｇｕｌａｔｅｓ ｔｙｐｅ Ｉ ＩＦＮ ａｎｔｉｖｉｒａｌ ｉｎｎａｔｅ ｉｍｍｕｎｅ ｒｅｓｐｏｎｓｅｓ ｂｙ ｄｅｕｂｉｑ⁃
ｕｉｔｉｎａｔｉｎｇ ａｎｄ ｓｔａｂｉｌｉｚｉｎｇ ＩＲＦ３［Ｊ］ ． ｍＢｉｏ， ２０２３， １４（５） ｄｏｉ：１０．
１１２８ ／ ｍｂｉｏ． ００３３２ － ２３．

［２３］ ＡＬ Ｈａｍｒａｓｈｄｉ Ｍ， Ｂｒａｄｙ Ｇ． Ｒｅｇｕｌａｔｉｏｎ ｏｆ ＩＲＦ３ ａｃｔｉｖａｔｉｏｎ ｉｎ ｈｕ⁃

ｍａｎ ａｎｔｉｖｉｒａｌ ｓｉｇｎａｌｉｎｇ ｐａｔｈｗａｙｓ［Ｊ］ ． Ｂｉｏｃｈｅｍ Ｐｈａｒｍａｃｏｌ， ２０２２，
２００： １１５０２６． ｄｏｉ：１０． １０１６ ／ ｊ． ｂｃｐ． ２０２２． １１５０２６．

［２４］ Ｆａｎ Ｓ， Ｐｏｐｌｉ Ｓ， Ｃｈａｋｒａｖａｒｔｙ Ｓ， ｅｔ ａｌ． Ｎｏｎ⁃ｔｒａｎｓｃｒｉｐｔｉｏｎａｌ ＩＲＦ７
ｉｎｔｅｒａｃｔｓ ｗｉｔｈ ＮＦ⁃κＢ ｔｏ ｉｎｈｉｂｉｔ ｖｉｒａｌ ｉｎｆｌａｍｍａｔｉｏｎ ［ Ｊ］ ． Ｊ Ｂｉｏｌ
Ｃｈｅｍ， ２０２４， ３００ （ ４ ）： １０７２００． ｄｏｉ： １０． １０１６ ／ ｊ． ｊｂｃ． ２０２４．
１０７２００．

［２５］ Ｓｈｉ Ｈ Ｘ， Ｙａｎｇ Ｋ， Ｌｉｕ Ｘ， ｅｔ ａｌ． Ｐｏｓｉｔｉｖｅ ｒｅｇｕｌａｔｉｏｎ ｏｆ ｉｎｔｅｒｆｅｒｏｎ
ｒｅｇｕｌａｔｏｒｙ ｆａｃｔｏｒ ３ ａｃｔｉｖａｔｉｏｎ ｂｙ Ｈｅｒｃ５ ｖｉａ ＩＳＧ１５ ｍｏｄｉｆｉｃａｔｉｏｎ［Ｊ］ ．
Ｍｏｌ Ｃｅｌｌ Ｂｉｏｌ， ２０１０， ３０（１０）： ２４２４ － ３６． ｄｏｉ：１０． １１２８ ／ ＭＣＢ．
０１４６６ － ０９．

Ｍａｃｈｉｎｅ ｌｅａｒｎｉｎｇ ｃｏｍｂｉｎｅｄ ｗｉｔｈ ｂｉｏｉｎｆｏｒｍａｔｉｃｓ ｔｏ ｅｘｐｌｏｒｅ ｂｉｏｍａｒｋｅｒｓ
ａｓｓｏｃｉａｔｅｄ ｗｉｔｈ ｓｙｓｔｅｍｉｃ ｌｕｐｕｓ ｅｒｙｔｈｅｍａｔｏｓｕｓ ｄｉａｇｎｏｓｉｓ

Ｔａｎｇ Ｒａｎ１， ２， Ｊｉａｎｇ Ｇｅｇｅ１， ２， Ｍｅｎｇ Ｘｉａｎｇｗｅｎ１， ２， Ｃａｉ Ｚｈｅｎｇ１， ２， Ｊｉｎ Ｌｉ３， Ｘｉａｎｇ Ｎａｎ３， Ｚｈａｎｇ Ｍｉｎ３， Ｊｉａ Ｘｉａｏｙｉ１， ２

［ １Ｓｃｈｏｏｌ ｏｆ Ｐｈａｒｍａｃｙ， Ａｎｈｕｉ Ｕｎｉｖｅｒｓｉｔｙ ｏｆ Ｃｈｉｎｅｓｅ Ｍｅｄｉｃｉｎｅ， Ｈｅｆｅｉ　 ２３００１２；
２Ａｎｈｕｉ Ｐｒｏｖｉｎｃｅ Ｋｅｙ Ｌａｂｏｒａｔｏｒｙ ｏｆ Ｂｉｏａｃｔｉｖｅ Ｎａｔｕｒａｌ Ｐｒｏｄｕｃｔｓ， Ｈｅｆｅｉ　 ２３００１２；３Ｄｅｐｔ ｏｆ Ｒｈｅｕｍａｔｏｌｏｇｙ
ａｎｄ Ｉｍｍｕｎｏｌｏｇｙ， Ｔｈｅ Ｆｉｒｓｔ Ａｆｆｉｌｉａｔｅｄ Ｈｏｓｐｉｔａｌ ｏｆ ＵＳＴＣ（Ａｎｈｕｉ Ｐｒｏｖｉｎｃｉａｌ Ｈｏｓｐｉｔａｌ），Ｈｅｆｅｉ　 ２３０００１］

Ａｂｓｔｒａｃｔ　 Ｏｂｊｅｃｔｉｖｅ　 Ｔｏ ｐｒｅｄｉｃｔ ａｎｄ ｓｃｒｅｅｎ ｐｏｔｅｎｔｉａｌ ｂｉｏｍａｒｋｅｒｓ ｏｆ ｓｙｓｔｅｍｉｃ ｌｕｐｕｓ ｅｙｔｈｅｍａｔｏｓｕｓ （ＳＬＥ） ｂａｓｅｄ ｏｎ
ｍａｃｈｉｎｅ ｌｅａｒｎｉｎｇ ａｌｇｏｒｉｔｈｍｓ ａｎｄ ｓｔｒｕｃｔｕｒａｌ ｂｉｏｌｏｇｙ， ａｎｄ ｔｏ ｒｅｖｅａｌ ｔｈｅｉｒ ｍｅｃｈａｎｉｓｍｓ ｏｆ ａｃｔｉｏｎ ａｎｄ ｔｏ ｐｒｏｖｉｄｅ ｎｅｗ ｔａｒ⁃
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